-
Nuclear grade graphite is a kind of key material in the high temperature gas-cooled reactor pebble-bed module (HTR-PM), where nuclear grade graphite acts as the fuel element matrix material, structural material and neutron reflector. In the reactor, the service environment of nuclear grade graphite suffers high temperature and strong neutron radiation. Both neutron radiation and the oxidation by the oxidizing impurities in HTGR coolant can cause the structure to damage and the properties to deteriorate. Therefore, it is of great significance to study the evolution of defects in nuclear grade graphite for improving the reactor safety. The effects of ion irradiation and oxidation on the point defects in IG-110 graphite are studied in this work. The 190 keV He+ implantation treatments at room temperature with fluences of 1 × 1015, 5 × 1015, 1 × 1016 and 1 × 1017 cm–2 are performed to induce 0.029, 0.14, 0.29 and 2.9 displacements per atom respectively. Oxidation treatments are performed at 850 ℃ for 10, 15, 20 and 25 min. Different sequences of He+ ion irradiation and oxidation are performed, which include irradiation only (Irr.), oxidation only (Ox.), irradiation followed by oxidation (Irr.-Ox.), and oxidation followed by irradiation (Ox.-Irr.). Raman spectrum shows that with the increase of ion irradiation dose, the intensity ratio of D peak to G peak (ID/IG) first increases and then decreases, implying that the point defects in graphite are induced by ion irradiation and the point defects evolve as dose increases; the degree of graphitization increases after oxidation, implying that the point defects are recovered by the annealing effect at high temperature, and the point defects decrease after oxidation. This makes Ox.-Irr. samples have a lower point defect content than Irr. samples, and leads Irr.-Ox. samples to possess a higher point defect content than Ox. samples. The positron annihilation Doppler broadening tests reveal that there are only point defects after ion irradiation and oxidation have partially recovered point defects. The ion irradiation and oxidation have opposite effects on the evolution of point defect in graphite. The ion irradiation increases the average S-parameter and reduces the average W-parameter, while oxidation reduces the average S-parameter and increases the average W-parameter. The annealing effect at 850 ℃ cannot completely recover the point defects in Irr.-Ox. samples.
-
Keywords:
- high temperature gas-cooled reactor pebble-bed module /
- nuclear grade graphite /
- ion irradiation /
- oxidation /
- point defect
[1] Kelly B T 1982 Carbon 20 3Google Scholar
[2] Zhou Z, Bouwman W G, Schut H, Pappas C 2014 Carbon 69 17Google Scholar
[3] Marsden B J, Jones A N, Hall G, Treifi M, Mummery P 2016 Structural Materials for Generation IV Nuclear Reactors (1st Ed.) (Cambridge: Woodhead Publishing) pp495−532
[4] Heijna M C R, de Groot S D, Vreeling J A 2017 J. Nucl. Mater. 492 148Google Scholar
[5] [6] Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R C 2014 Chin. Phys. B 23 126105Google Scholar
[7] Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D, Sun Y M 2015 Chin. Phys. B 24 086103
[8] 付晓刚, 李正操, 张政军 2010 原子能科学技术 44 686
Fu X G, Li Z C, Zhang Z J 2010 Atom. Energ. Sci. Tech. 44 686
[9] Burchell T D, Pappano P J, Strizak J P 2011 Carbon 49 3Google Scholar
[10] Kelly B, Marsden B, Hall K, Martin D, Harper A, Blanchard A 2000 Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems (IAEA-Tecdoc-1154) pp45−114
[11] Tang Z, Hasegawa M, Shimamura T, Nagai T, Chiba T, Kawazoe Y 1999 Phys. Rev. Lett. 82 2532Google Scholar
[12] 王鹏, 于溯源 2013 核动力工程 2013 46Google Scholar
Wang P, Yu S Y 2013 Nucl. Power Eng. 2013 46Google Scholar
[13] Chi S, Kim G 2008 J. Nucl. Mater. 381 9Google Scholar
[14] Yan R, Dong Y, Zhou Y, Sun X M, Li Z C 2017 J. Nucl. Sci. Technol. 54 1168Google Scholar
[15] 魏明辉, 孙喜明 2013 原子能科学技术 47 1620Google Scholar
Wei M H, Sun X M 2013 Atom. Energ. Sci. Technol. 47 1620Google Scholar
[16] Lee J J, Ghosh T K, Loyalka S K 2013 J. Nucl. Mater. 438 77Google Scholar
[17] 王鹏, 于溯源 2012 原子能科学技术 46 84
Wang P, Yu S Y 2012 Atom. Energ. Sci. Technol. 46 84
[18] 郑艳华, 石磊 2010 原子能科学技术 44 253
Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 253
[19] 徐伟, 郑艳华, 石磊 2017 原子能科学技术 51 694Google Scholar
Xu W, Zheng Y H, Shi L 2017 Atom. Energ. Sci. Technol. 51 694Google Scholar
[20] Richards M B, Gillespie A G, Hanson D L 1993 In-pile Corrosion of Grade H-451 Graphite by Steam in Modern Developments in Energy, Combustion and Spectroscopy (1st Ed.) (Oxford: Pergamon Press) pp87−94
[21] Liu J, Dong L, Wang C, Liang T X, Lai W S 2015 Nucl. Instrum. Meth. B 352 160Google Scholar
[22] Vavilin A I, Chernikov 1992 Atom. Energ. 73 618Google Scholar
[23] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. B 268 1818Google Scholar
[24] 王鹏 2013 博士学位论文 (北京: 清华大学) 第30−34页
Wang P 2013 Ph. D. Dissertation (Beijing: Tsinghua University) pp30−34 (in Chinese)
[25] Reich S, Thomsen C 2004 Phil. Trans. R. Soc. Lond. A 362 2271Google Scholar
[26] Childres I, Jauregui L, Park W, Cao H, Chen Y P 2013 Raman Spectroscopy of Graphene and Related Materials in New Developments in Photon and Materials Research (1st Ed.) (New York: Nova Science Publishers) pp1−20
[27] Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K 2014 J. Phys. Conf. Ser. 505 012014Google Scholar
[28] Shi C Q, Schut H, Li Z C 2016 J. Phys. Conf. Ser. 674 012019Google Scholar
[29] MacKenzie I K, Eady J A, Gingerich R R 1970 Phys. Lett. A 33 279
[30] Schut H 1990 Ph. D. Dissertation (Delft: Delft University of Technology) pp67−102
[31] Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R B, Achete C A, Jorio A 2010 Carbon 48 1592Google Scholar
[32] 徐世江, 康飞宇 2010 核工程中的炭和石墨材料 (北京: 清华大学出版社) (第1版) 第140−143页
Xu S J, Kang F Y 2010 Carbon and Graphite Materials in Nuclear Engineering (1st Ed.) pp140−143 (in Chinese)
[33] Latham C D, Heggie M I, Alatalo M, Oberg S, Briddon P R 2013 J. Phys. Conden. Matter 25 135403Google Scholar
-
-
[1] Kelly B T 1982 Carbon 20 3Google Scholar
[2] Zhou Z, Bouwman W G, Schut H, Pappas C 2014 Carbon 69 17Google Scholar
[3] Marsden B J, Jones A N, Hall G, Treifi M, Mummery P 2016 Structural Materials for Generation IV Nuclear Reactors (1st Ed.) (Cambridge: Woodhead Publishing) pp495−532
[4] Heijna M C R, de Groot S D, Vreeling J A 2017 J. Nucl. Mater. 492 148Google Scholar
[5] [6] Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R C 2014 Chin. Phys. B 23 126105Google Scholar
[7] Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D, Sun Y M 2015 Chin. Phys. B 24 086103
[8] 付晓刚, 李正操, 张政军 2010 原子能科学技术 44 686
Fu X G, Li Z C, Zhang Z J 2010 Atom. Energ. Sci. Tech. 44 686
[9] Burchell T D, Pappano P J, Strizak J P 2011 Carbon 49 3Google Scholar
[10] Kelly B, Marsden B, Hall K, Martin D, Harper A, Blanchard A 2000 Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems (IAEA-Tecdoc-1154) pp45−114
[11] Tang Z, Hasegawa M, Shimamura T, Nagai T, Chiba T, Kawazoe Y 1999 Phys. Rev. Lett. 82 2532Google Scholar
[12] 王鹏, 于溯源 2013 核动力工程 2013 46Google Scholar
Wang P, Yu S Y 2013 Nucl. Power Eng. 2013 46Google Scholar
[13] Chi S, Kim G 2008 J. Nucl. Mater. 381 9Google Scholar
[14] Yan R, Dong Y, Zhou Y, Sun X M, Li Z C 2017 J. Nucl. Sci. Technol. 54 1168Google Scholar
[15] 魏明辉, 孙喜明 2013 原子能科学技术 47 1620Google Scholar
Wei M H, Sun X M 2013 Atom. Energ. Sci. Technol. 47 1620Google Scholar
[16] Lee J J, Ghosh T K, Loyalka S K 2013 J. Nucl. Mater. 438 77Google Scholar
[17] 王鹏, 于溯源 2012 原子能科学技术 46 84
Wang P, Yu S Y 2012 Atom. Energ. Sci. Technol. 46 84
[18] 郑艳华, 石磊 2010 原子能科学技术 44 253
Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 253
[19] 徐伟, 郑艳华, 石磊 2017 原子能科学技术 51 694Google Scholar
Xu W, Zheng Y H, Shi L 2017 Atom. Energ. Sci. Technol. 51 694Google Scholar
[20] Richards M B, Gillespie A G, Hanson D L 1993 In-pile Corrosion of Grade H-451 Graphite by Steam in Modern Developments in Energy, Combustion and Spectroscopy (1st Ed.) (Oxford: Pergamon Press) pp87−94
[21] Liu J, Dong L, Wang C, Liang T X, Lai W S 2015 Nucl. Instrum. Meth. B 352 160Google Scholar
[22] Vavilin A I, Chernikov 1992 Atom. Energ. 73 618Google Scholar
[23] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. B 268 1818Google Scholar
[24] 王鹏 2013 博士学位论文 (北京: 清华大学) 第30−34页
Wang P 2013 Ph. D. Dissertation (Beijing: Tsinghua University) pp30−34 (in Chinese)
[25] Reich S, Thomsen C 2004 Phil. Trans. R. Soc. Lond. A 362 2271Google Scholar
[26] Childres I, Jauregui L, Park W, Cao H, Chen Y P 2013 Raman Spectroscopy of Graphene and Related Materials in New Developments in Photon and Materials Research (1st Ed.) (New York: Nova Science Publishers) pp1−20
[27] Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K 2014 J. Phys. Conf. Ser. 505 012014Google Scholar
[28] Shi C Q, Schut H, Li Z C 2016 J. Phys. Conf. Ser. 674 012019Google Scholar
[29] MacKenzie I K, Eady J A, Gingerich R R 1970 Phys. Lett. A 33 279
[30] Schut H 1990 Ph. D. Dissertation (Delft: Delft University of Technology) pp67−102
[31] Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R B, Achete C A, Jorio A 2010 Carbon 48 1592Google Scholar
[32] 徐世江, 康飞宇 2010 核工程中的炭和石墨材料 (北京: 清华大学出版社) (第1版) 第140−143页
Xu S J, Kang F Y 2010 Carbon and Graphite Materials in Nuclear Engineering (1st Ed.) pp140−143 (in Chinese)
[33] Latham C D, Heggie M I, Alatalo M, Oberg S, Briddon P R 2013 J. Phys. Conden. Matter 25 135403Google Scholar
Catalog
Metrics
- Abstract views: 8755
- PDF Downloads: 88
- Cited By: 0