搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PECVD法制备高结晶GaN薄膜及其光电响应性能

梁琦 杨孟骐 张京阳 王如志

引用本文:
Citation:

PECVD法制备高结晶GaN薄膜及其光电响应性能

梁琦, 杨孟骐, 张京阳, 王如志

PECVD-prepared high-quality GaN films and their photoresponse properties

Liang Qi, Yang Meng-Qi, Zhang Jing-Yang, Wang Ru-Zhi
PDF
HTML
导出引用
  • 采用一种简单、绿色、低成本的等离子增强化学气相沉积(PECVD)法, 在950 ℃下成功制备了高结晶质量的GaN薄膜. 为了提高GaN薄膜结晶质量和弄清GaN薄膜光响应机制, 研究了GaN缓冲层制备温度对GaN薄膜结晶质量和光电性能的影响. 研究表明, 随着GaN缓冲层制备温度的增加, GaN薄膜的结晶质量先提高后降低, 在缓冲层温度为875 ℃ 时, 结晶质量最高, 此时计算得出的总位错密度为9.74×109 cm–2, 载流子迁移率为0.713 cm2/(V·s). 经过退火后, GaN薄膜的总位错密度降低到7.38×109 cm–2, 载流子迁移率增大到43.5 cm2/(V·s), 此时GaN薄膜光响应度为0.20 A/W, 光响应时间为15.4 s, 恢复时间为24 s, 可应用于紫外光探测器. 通过Hall测试和X射线光电子能谱仪分析得出, GaN薄膜内部存在着N空位、Ga空位或O掺杂, 它们作为深阱能级束缚和复合光生电子和空穴, 使得光响应度与偏压呈抛物线关系; 另外, 空位和O掺杂形成的深阱能级也是导致GaN薄膜的光电流响应和恢复缓慢的根本原因.
    In this study, the high-quality GaN films are prepared by a simple, green and low-cost plasma enhanced chemical vapor deposition (PECVD) method at 950 ℃, with Ga2O3 and N2 serving as a gallium source and a nitrogen source, respectively. In order to improve the crystal quality of GaN films and ascertain the photoresponse mechanism of GaN films, the effect of the preparation temperature of GaN buffer layer on the crystal quality and photoelectric properties of GaN thin films are investigated. It is indicated that with the increase of the buffer temperature of GaN films, the crystal quality of GaN films first increases and then decreases, and the highest crystal quality is obtained at 875 ℃. When buffer layer temperature is 875 ℃, the calculated total dislocation density is 9.74 × 109 cm–2, and the carrier mobility is 0.713 cm2·V–1·s–1. The crystal quality of GaN film after being annealed is improved. The total dislocation density of GaN film decreases to 7.38 × 109 cm–2, and the carrier mobility increases to 43.5 cm2·V–1·s–1. The UV-Vis absorption spectrum results indicate that the optical band gap of GaN film is 3.35 eV. The scanning electron microscope (SEM) results indicate that GaN film (buffer layer temperature is 875 ℃) has smooth surface and compact structure. The Hall and X-ray photoelectron spectroscopy (XPS) results indicate that there are N vacancies, Ga vacancies or O doping in the GaN film, which act as deep level to capture photogenerated electrons and holes. With the bias increasing, the photoresponsivity of the GaN film photodetector gradually increases and then reaches a saturation value. This is due to the deep levels produced by vacancy or O doping. In addition, photocurrent response and recovery of GaN film are slow, which is also due to the deep levels formed by vacancy or O doping. At 5-V bias, the photoresponsivity of GaN film is 0.2 A/W, rise time is 15.4 s, and fall time is 24 s. Therefore, the high-quality GaN film prepared by the proposed green and low-cost PECVD method present a strong potential application in ultraviolet photodetector. The PECVD method developed by us provides a feasible way of preparing high-quality GaN films, and the understanding of the photoresponse mechanism of GaN films provides a theoretical basis for the wide application of GaN films.
      通信作者: 王如志, wrz@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774017)资助的课题
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774017)
    [1]

    Liu L, Xia S, Diao Y, Lu F, Tian J 2020 Solid State Ionics 350 115327Google Scholar

    [2]

    Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X, Li S 2014 Nanoscale 6 12009Google Scholar

    [3]

    Zhang X, Liu Q, Liu B, Yang W, Li J, Niu P, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [4]

    Peng M, Liu Y, Yu A, Zhang Y, Liu C, Liu J, Wu W, Zhang K, Shi X, Kou J, Zhai J, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [5]

    Chen X Y, Yip C T, Fung M K, Djurišić A B, Chan W K 2010 Appl. Phys. A 100 15Google Scholar

    [6]

    Li Y, Wang W, Li X, Huang L, Lin Z, Zheng Y, Chen X, Li G 2019 J. Alloys Compd. 771 1000Google Scholar

    [7]

    Deng G, Zhang Y, Yu Y, Yan L, Li P, Han X, Chen L, Zhao D, Du G 2018 Superlattice. Microstruct. 116 1Google Scholar

    [8]

    Liang Q, Wang R Z, Yang M Q, Ding Y, Wang C H 2020 Thin Solid Films 710 138266Google Scholar

    [9]

    Yang W J, Wang W L, Liu Z L, Li G Q 2015 Mater. Sci. Semicond. Process. 39 499Google Scholar

    [10]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Tanaka S, Amano H 2013 Phys. Status Solidi C 10 369Google Scholar

    [11]

    Bak S J, Mun D H, Jung K C, Park J H, Bae H J, Lee I W, Ha J S, Jeong T, Oh T S 2013 Electron. Mater. Lett. 9 367Google Scholar

    [12]

    Tran B T, Chang E Y, Lin K L, Luong T T, Yu H W, Huang M C, Chung C C, Trinh H D, Nguyen H Q, Nguyen C L, Luc Q H 2012 ECS Trans. 50 461Google Scholar

    [13]

    Huang W C, Chu C M, Wong Y Y, Chen K W, Lin Y K, Wu C H, Lee W I, Chang E Y 2016 Mater. Sci. Semicond. Process. 45 1Google Scholar

    [14]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [15]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [16]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth. Des. 19 2687Google Scholar

    [17]

    梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟 2020 物理学报 69 087801Google Scholar

    Liang Q, Wang R Z, Yang M Q, Wang C H, Liu J W 2020 Acta Phys. Sin. 69 087801Google Scholar

    [18]

    Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya K K, Kumar M S, Kushvaha S S 2019 J. Alloys Compd. 770 572Google Scholar

    [19]

    Popovici G, Xu G Y, Botchkarev A, Kim W, Tang H, Salvador A, Morkoç H, Strange R, White J O 1997 J. Appl. Phys. 82 4020Google Scholar

    [20]

    Eckey L, Gfug U V, Holst J, Hoffmann A, Kaschner A, Siegle H, Thomsen C, Schineller B, Heime K, Heuken M, Schön O, Beccard R 1998 J. Appl. Phys. 84 5828Google Scholar

    [21]

    Greenlee J D, Feigelson B N, Anderson T J, Tadjer M J, Hite J K, Mastro M A, Eddy C R, Hobart K D, Kub F J 2014 J. Appl. Phys. 116 063502Google Scholar

    [22]

    Huang Y, Chen X D, Fung S, Beling C D, Ling C C, Wei Z F, Xu S J, Zhi C Y 2004 J. Appl. Phys. 96 1120Google Scholar

    [23]

    Hwang C Y, Schurman M J, Mayo W E 1997 J. Electron. Mater. 26 243Google Scholar

    [24]

    Jeong J K, Choi J H, Hwang C S, Kim H J, Lee J H, Lee J H, Kim C S 2004 Appl. Phys. Lett. 84 2575Google Scholar

    [25]

    Ng H M, Doppalapudi D, Moustakas T D, Weimann N G, Eastman L F 1998 Appl. Phys. Lett. 73 821Google Scholar

    [26]

    Lee J H, Hahm S H, Lee J H, Bae S B, Lee K S, Cho Y H, Lee J L 2003 Appl. Phys. Lett. 83 917Google Scholar

    [27]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Wang B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [28]

    Lee C T, Lin Y J, Lin C H 2002 J. Appl. Phys. 92 3825Google Scholar

    [29]

    Gui Y, Yang L, Tian K, Zhang H, Fang S 2019 Sens. Actuators, B 288 104Google Scholar

    [30]

    Sun X, Li D, Jiang H, Li Z, Song H, Chen Y, Miao G 2011 Appl. Phys. Lett. 98 121117Google Scholar

    [31]

    Jhou Y D, Chang S J, Su Y K, Lee Y Y, Liu C H, Lee H C 2007 Appl. Phys. Lett. 91 103506Google Scholar

    [32]

    Golgir H R, Li D W, Keramatnejad K, Zou Q M, Xiao J, Wang F, Jiang L, Silvain J F, Lu Y F 2017 ACS Appl. Mater. Interfaces 9 21539Google Scholar

    [33]

    Müller A, Konstantinidis G, Androulidaki M, Dinescu A, Stefanescu A, Cismaru A, Neculoiu D, Pavelescu E, Stavrinidis A 2012 Thin Solid Films 520 2158Google Scholar

    [34]

    Xie F, Lu H, Xiu X, Chen D, Han P, Zhang R, Zheng Y 2011 Solid State Electron. 57 39Google Scholar

    [35]

    Osinsky A, Gangopadhyay S, Yang J W, Gaska R, Kuksenkov D, Temkin H, Shmagin I K, Chang Y C, Muth J F, Kolbas R M 1998 Appl. Phys. Lett. 72 551Google Scholar

    [36]

    Pant R, Shetty A, Chandan G, Roul B, Nanda K K, Krupanidhi S B 2018 ACS Appl. Mater. Interfaces 10 16918Google Scholar

    [37]

    Mukundan S, Mohan L, Chandan G, Roul B, Krupanidhi S B 2014 J. Appl. Phys. 116 204502Google Scholar

  • 图 1  不同制备温度缓冲层的未退火GaN薄膜的XRD图谱

    Fig. 1.  The XRD pattern of unannealed GaN films with buffer layer fabricated at different temperature.

    图 2  不同制备温度缓冲层的未退火GaN薄膜的XRC半高全宽曲线

    Fig. 2.  The FWHM of XRCs of unannealed GaN films with buffer layer fabricated at different temperature.

    图 3  不同制备温度缓冲层的未退火GaN薄膜的Raman光谱图

    Fig. 3.  Raman spectra of unannealed GaN films with buffer layer fabricated at different temperature.

    图 4  未退火GaN薄膜的缓冲层制备温度与电子浓度和迁移率的关系曲线

    Fig. 4.  Electron concentration and mobility of unannealed GaN films with buffer layer at different temperature.

    图 5  退火GaN薄膜的缓冲层制备温度与迁移率的关系曲线

    Fig. 5.  Mobility of annealed GaN films with buffer layer at different temperature.

    图 6  缓冲层制备温度为875 ℃的退火GaN薄膜的XRC图谱 (a) (100)面; (b) (101)面

    Fig. 6.  The XRCs of annealed GaN fim with buffer layer at 875 ℃: (a) (100); (b) (101).

    图 7  缓冲层制备温度为875 ℃的退火GaN薄膜的Raman光谱图

    Fig. 7.  Raman spectra of annealed GaN fim with buffer layer at 875 ℃.

    图 8  缓冲层制备温度为875 ℃的退火GaN薄膜的微观区域SEM图和实物图 (a)表面SEM图; (b)截面SEM图; (c) 退火GaN薄膜样品的实物图

    Fig. 8.  SEM images and picture of annealed GaN film with buffer layer at 875 ℃: (a) SEM image of surface; (b) cross sectional SEM image; (c) the picture of annealed GaN film sample.

    图 9  GaN薄膜的XPS图谱 (a)全谱; (b) N 1s带; (c) Ga 2p3/2带; (d) O 1s 带

    Fig. 9.  XPS spectra of annealed GaN fim with buffer layer at 875 ℃: (a) General scan spectrum; (b) N 1s band; (c) Ga 2p3/2 band; (d) O 1s band.

    图 10  GaN薄膜的UV-Vis吸收光谱.

    Fig. 10.  UV-Vis absorption spectrum of GaN film.

    图 11  退火GaN薄膜紫外探测器的I -V曲线.

    Fig. 11.  The I -V curve of annealed GaN film ultraviolet photodetector.

    图 12  (a)退火GaN薄膜紫外探测器在不同光照强度下的光电流; (b)功率与光响应度的关系曲线

    Fig. 12.  (a) Photocurrent of GaN film ultraviolet photodetector at different illumination intensity; (b) the power versus photoresponsivity curve of GaN fim ultraviolet photodetector.

    图 13  退火GaN薄膜紫外探测器在不同偏压下的电流以及光响应度 (a) 0 V; (b) 0.05 V; (c) 0.1 V; (d) 0.3 V; (e) 0.5 V; (f) 1 V; (g) 2 V; (h) 3 V; (i)不同偏压对应的光响应度大小

    Fig. 13.  Current of annealed GaN films ultraviolet photodetector at different bias voltage: (a) 0 V; (b) 0.05 V; (c) 0.1 V; (d) 0.3 V; (e) 0.5 V; (f) 1 V; (g) 2 V; (h) 3 V. (i) The responsivity of photodetector at different bias voltage.

    图 14  退火GaN薄膜紫外探测器 (a)电流与时间的关系曲线; (b)时间与光电流上升的曲线; (c)时间与光电流下降的曲线

    Fig. 14.  (a) Current versus time curve of annealed GaN film ultraviolet photodetector; (b) the time versus rise current curve of annealed GaN film ultraviolet photodetector; (c) the time versus fall current curve of annealed GaN film ultraviolet photodetector.

    表 1  不同缓冲层制备温度下获得的GaN薄膜的位错密度计算值

    Table 1.  Dislocation density of GaN films with buffer layer fabricated at different temperature.

    缓冲层制备
    温度/℃
    刃位错密度
    /(109 cm–2)
    螺位错密度
    /(109 cm–2)
    总位错密度
    /(1010 cm–2)
    8258.682.941.16
    8508.532.771.13
    8757.412.330.974
    9007.642.521.02
    9258.632.791.14
    下载: 导出CSV

    表 2  不同制备温度缓冲层的未退火GaN薄膜相对应的E2(high)声子散射峰半高全宽

    Table 2.  The full width at half maximum of E2 (high) phonon scattering peak of unannealed GaN fims with buffer layer at different temperature.

    缓冲层制备温度/℃
    825850875900925
    半高全宽/cm–118.813.31012.525.2
    下载: 导出CSV

    表 3  缓冲层制备温度为875 ℃的GaN薄膜退火前后的Hall数据对比

    Table 3.  Hall value of unannealed and annealed GaN films with buffer layer at 875 ℃.

    电阻率
    /(Ω·cm–1)
    迁移率
    /(cm2·V–1·s–1)
    载流子浓度
    /(1017 cm–3)
    退火前24.860.7133.524
    退火后5.25443.53.907
    下载: 导出CSV

    表 4  本工作GaN薄膜紫外光探测器光响应度与其他文献的对比

    Table 4.  Responsivity of GaN film ultraviolet photodetector in literature.

    GaN薄膜制备方法偏压/V光响应度
    /(A·W–1)
    文献
    金属有机化学气相沉积法00.03[4]
    金属有机化学气相沉积法50.108[32]
    金属有机化学气相沉积法2.50.37[33]
    氢化物外延法50.3[34]
    分子束外延法40.1[35]
    分子束外延法11.88[36]
    等离子增强化学气相沉积法50.20本工作
    下载: 导出CSV
  • [1]

    Liu L, Xia S, Diao Y, Lu F, Tian J 2020 Solid State Ionics 350 115327Google Scholar

    [2]

    Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X, Li S 2014 Nanoscale 6 12009Google Scholar

    [3]

    Zhang X, Liu Q, Liu B, Yang W, Li J, Niu P, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [4]

    Peng M, Liu Y, Yu A, Zhang Y, Liu C, Liu J, Wu W, Zhang K, Shi X, Kou J, Zhai J, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [5]

    Chen X Y, Yip C T, Fung M K, Djurišić A B, Chan W K 2010 Appl. Phys. A 100 15Google Scholar

    [6]

    Li Y, Wang W, Li X, Huang L, Lin Z, Zheng Y, Chen X, Li G 2019 J. Alloys Compd. 771 1000Google Scholar

    [7]

    Deng G, Zhang Y, Yu Y, Yan L, Li P, Han X, Chen L, Zhao D, Du G 2018 Superlattice. Microstruct. 116 1Google Scholar

    [8]

    Liang Q, Wang R Z, Yang M Q, Ding Y, Wang C H 2020 Thin Solid Films 710 138266Google Scholar

    [9]

    Yang W J, Wang W L, Liu Z L, Li G Q 2015 Mater. Sci. Semicond. Process. 39 499Google Scholar

    [10]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Tanaka S, Amano H 2013 Phys. Status Solidi C 10 369Google Scholar

    [11]

    Bak S J, Mun D H, Jung K C, Park J H, Bae H J, Lee I W, Ha J S, Jeong T, Oh T S 2013 Electron. Mater. Lett. 9 367Google Scholar

    [12]

    Tran B T, Chang E Y, Lin K L, Luong T T, Yu H W, Huang M C, Chung C C, Trinh H D, Nguyen H Q, Nguyen C L, Luc Q H 2012 ECS Trans. 50 461Google Scholar

    [13]

    Huang W C, Chu C M, Wong Y Y, Chen K W, Lin Y K, Wu C H, Lee W I, Chang E Y 2016 Mater. Sci. Semicond. Process. 45 1Google Scholar

    [14]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [15]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [16]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth. Des. 19 2687Google Scholar

    [17]

    梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟 2020 物理学报 69 087801Google Scholar

    Liang Q, Wang R Z, Yang M Q, Wang C H, Liu J W 2020 Acta Phys. Sin. 69 087801Google Scholar

    [18]

    Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya K K, Kumar M S, Kushvaha S S 2019 J. Alloys Compd. 770 572Google Scholar

    [19]

    Popovici G, Xu G Y, Botchkarev A, Kim W, Tang H, Salvador A, Morkoç H, Strange R, White J O 1997 J. Appl. Phys. 82 4020Google Scholar

    [20]

    Eckey L, Gfug U V, Holst J, Hoffmann A, Kaschner A, Siegle H, Thomsen C, Schineller B, Heime K, Heuken M, Schön O, Beccard R 1998 J. Appl. Phys. 84 5828Google Scholar

    [21]

    Greenlee J D, Feigelson B N, Anderson T J, Tadjer M J, Hite J K, Mastro M A, Eddy C R, Hobart K D, Kub F J 2014 J. Appl. Phys. 116 063502Google Scholar

    [22]

    Huang Y, Chen X D, Fung S, Beling C D, Ling C C, Wei Z F, Xu S J, Zhi C Y 2004 J. Appl. Phys. 96 1120Google Scholar

    [23]

    Hwang C Y, Schurman M J, Mayo W E 1997 J. Electron. Mater. 26 243Google Scholar

    [24]

    Jeong J K, Choi J H, Hwang C S, Kim H J, Lee J H, Lee J H, Kim C S 2004 Appl. Phys. Lett. 84 2575Google Scholar

    [25]

    Ng H M, Doppalapudi D, Moustakas T D, Weimann N G, Eastman L F 1998 Appl. Phys. Lett. 73 821Google Scholar

    [26]

    Lee J H, Hahm S H, Lee J H, Bae S B, Lee K S, Cho Y H, Lee J L 2003 Appl. Phys. Lett. 83 917Google Scholar

    [27]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Wang B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [28]

    Lee C T, Lin Y J, Lin C H 2002 J. Appl. Phys. 92 3825Google Scholar

    [29]

    Gui Y, Yang L, Tian K, Zhang H, Fang S 2019 Sens. Actuators, B 288 104Google Scholar

    [30]

    Sun X, Li D, Jiang H, Li Z, Song H, Chen Y, Miao G 2011 Appl. Phys. Lett. 98 121117Google Scholar

    [31]

    Jhou Y D, Chang S J, Su Y K, Lee Y Y, Liu C H, Lee H C 2007 Appl. Phys. Lett. 91 103506Google Scholar

    [32]

    Golgir H R, Li D W, Keramatnejad K, Zou Q M, Xiao J, Wang F, Jiang L, Silvain J F, Lu Y F 2017 ACS Appl. Mater. Interfaces 9 21539Google Scholar

    [33]

    Müller A, Konstantinidis G, Androulidaki M, Dinescu A, Stefanescu A, Cismaru A, Neculoiu D, Pavelescu E, Stavrinidis A 2012 Thin Solid Films 520 2158Google Scholar

    [34]

    Xie F, Lu H, Xiu X, Chen D, Han P, Zhang R, Zheng Y 2011 Solid State Electron. 57 39Google Scholar

    [35]

    Osinsky A, Gangopadhyay S, Yang J W, Gaska R, Kuksenkov D, Temkin H, Shmagin I K, Chang Y C, Muth J F, Kolbas R M 1998 Appl. Phys. Lett. 72 551Google Scholar

    [36]

    Pant R, Shetty A, Chandan G, Roul B, Nanda K K, Krupanidhi S B 2018 ACS Appl. Mater. Interfaces 10 16918Google Scholar

    [37]

    Mukundan S, Mohan L, Chandan G, Roul B, Krupanidhi S B 2014 J. Appl. Phys. 116 204502Google Scholar

  • [1] 王俪璇, 李仁杰, 刘辉, 王鹏阳, 石标, 赵颖, 张晓丹. P-I-N型锡铅钙钛矿太阳电池性能的限制因素及解决策略. 物理学报, 2021, 70(11): 118402. doi: 10.7498/aps.70.20201678
    [2] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [3] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [4] 王保柱, 张秀清, 张奥迪, 周晓然, Bahadir Kucukgok, Na Lu, 肖红领, 王晓亮, Ian T. Ferguson. 金属有机物化学气相沉积生长GaN薄膜的室温热电特性研究. 物理学报, 2015, 64(4): 047202. doi: 10.7498/aps.64.047202
    [5] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [6] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [7] 李洪涛, 罗 毅, 席光义, 汪 莱, 江 洋, 赵 维, 韩彦军, 郝智彪, 孙长征. 基于X射线衍射的GaN薄膜厚度的精确测量. 物理学报, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [8] 苑进社, 陈光德. 蓝宝石邻晶面衬底MBE生长GaN薄膜的瞬态光电导弛豫特性研究. 物理学报, 2007, 56(7): 4218-4223. doi: 10.7498/aps.56.4218
    [9] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [10] 彭冬生, 冯玉春, 王文欣, 刘晓峰, 施 炜, 牛憨笨. 一种外延生长高质量GaN薄膜的新方法. 物理学报, 2006, 55(7): 3606-3610. doi: 10.7498/aps.55.3606
    [11] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究. 物理学报, 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [12] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [13] 赖天树, 范海华, 柳振东, 林位株. GaN的宽带黄光发射研究. 物理学报, 2003, 52(10): 2638-2641. doi: 10.7498/aps.52.2638
    [14] 赖天树, 林位株, 莫党. 非掺杂GaN的黄光发射模型确定. 物理学报, 2002, 51(5): 1149-1152. doi: 10.7498/aps.51.1149
    [15] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [16] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [17] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [18] 张志宏, 郭怀喜, 余非为, 熊启华, 叶明生, 范湘军. 低压等离子体增强化学汽相沉积法制备立方氮化碳薄膜. 物理学报, 1998, 47(6): 1047-1051. doi: 10.7498/aps.47.1047
    [19] 刘湘娜, 吴晓薇, 鲍希茂, 何宇亮. 用等离子体增强化学汽相沉积方法制备纳米晶粒硅薄膜光致发光. 物理学报, 1994, 43(6): 985-990. doi: 10.7498/aps.43.985
    [20] 张仿清, 张亚非, 杨映虎, 李敬起, 陈光华, 蒋翔六. 直流弧光放电化学气相沉积(CVD)法制备金刚石薄膜及其等离子体的光发射谱原位测量. 物理学报, 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
计量
  • 文章访问数:  6404
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-16
  • 修回日期:  2021-12-30
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回