Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PECVD-prepared high-quality GaN films and their photoresponse properties

Liang Qi Yang Meng-Qi Zhang Jing-Yang Wang Ru-Zhi

Citation:

PECVD-prepared high-quality GaN films and their photoresponse properties

Liang Qi, Yang Meng-Qi, Zhang Jing-Yang, Wang Ru-Zhi
PDF
HTML
Get Citation
  • In this study, the high-quality GaN films are prepared by a simple, green and low-cost plasma enhanced chemical vapor deposition (PECVD) method at 950 ℃, with Ga2O3 and N2 serving as a gallium source and a nitrogen source, respectively. In order to improve the crystal quality of GaN films and ascertain the photoresponse mechanism of GaN films, the effect of the preparation temperature of GaN buffer layer on the crystal quality and photoelectric properties of GaN thin films are investigated. It is indicated that with the increase of the buffer temperature of GaN films, the crystal quality of GaN films first increases and then decreases, and the highest crystal quality is obtained at 875 ℃. When buffer layer temperature is 875 ℃, the calculated total dislocation density is 9.74 × 109 cm–2, and the carrier mobility is 0.713 cm2·V–1·s–1. The crystal quality of GaN film after being annealed is improved. The total dislocation density of GaN film decreases to 7.38 × 109 cm–2, and the carrier mobility increases to 43.5 cm2·V–1·s–1. The UV-Vis absorption spectrum results indicate that the optical band gap of GaN film is 3.35 eV. The scanning electron microscope (SEM) results indicate that GaN film (buffer layer temperature is 875 ℃) has smooth surface and compact structure. The Hall and X-ray photoelectron spectroscopy (XPS) results indicate that there are N vacancies, Ga vacancies or O doping in the GaN film, which act as deep level to capture photogenerated electrons and holes. With the bias increasing, the photoresponsivity of the GaN film photodetector gradually increases and then reaches a saturation value. This is due to the deep levels produced by vacancy or O doping. In addition, photocurrent response and recovery of GaN film are slow, which is also due to the deep levels formed by vacancy or O doping. At 5-V bias, the photoresponsivity of GaN film is 0.2 A/W, rise time is 15.4 s, and fall time is 24 s. Therefore, the high-quality GaN film prepared by the proposed green and low-cost PECVD method present a strong potential application in ultraviolet photodetector. The PECVD method developed by us provides a feasible way of preparing high-quality GaN films, and the understanding of the photoresponse mechanism of GaN films provides a theoretical basis for the wide application of GaN films.
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774017)
    [1]

    Liu L, Xia S, Diao Y, Lu F, Tian J 2020 Solid State Ionics 350 115327Google Scholar

    [2]

    Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X, Li S 2014 Nanoscale 6 12009Google Scholar

    [3]

    Zhang X, Liu Q, Liu B, Yang W, Li J, Niu P, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [4]

    Peng M, Liu Y, Yu A, Zhang Y, Liu C, Liu J, Wu W, Zhang K, Shi X, Kou J, Zhai J, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [5]

    Chen X Y, Yip C T, Fung M K, Djurišić A B, Chan W K 2010 Appl. Phys. A 100 15Google Scholar

    [6]

    Li Y, Wang W, Li X, Huang L, Lin Z, Zheng Y, Chen X, Li G 2019 J. Alloys Compd. 771 1000Google Scholar

    [7]

    Deng G, Zhang Y, Yu Y, Yan L, Li P, Han X, Chen L, Zhao D, Du G 2018 Superlattice. Microstruct. 116 1Google Scholar

    [8]

    Liang Q, Wang R Z, Yang M Q, Ding Y, Wang C H 2020 Thin Solid Films 710 138266Google Scholar

    [9]

    Yang W J, Wang W L, Liu Z L, Li G Q 2015 Mater. Sci. Semicond. Process. 39 499Google Scholar

    [10]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Tanaka S, Amano H 2013 Phys. Status Solidi C 10 369Google Scholar

    [11]

    Bak S J, Mun D H, Jung K C, Park J H, Bae H J, Lee I W, Ha J S, Jeong T, Oh T S 2013 Electron. Mater. Lett. 9 367Google Scholar

    [12]

    Tran B T, Chang E Y, Lin K L, Luong T T, Yu H W, Huang M C, Chung C C, Trinh H D, Nguyen H Q, Nguyen C L, Luc Q H 2012 ECS Trans. 50 461Google Scholar

    [13]

    Huang W C, Chu C M, Wong Y Y, Chen K W, Lin Y K, Wu C H, Lee W I, Chang E Y 2016 Mater. Sci. Semicond. Process. 45 1Google Scholar

    [14]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [15]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [16]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth. Des. 19 2687Google Scholar

    [17]

    梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟 2020 物理学报 69 087801Google Scholar

    Liang Q, Wang R Z, Yang M Q, Wang C H, Liu J W 2020 Acta Phys. Sin. 69 087801Google Scholar

    [18]

    Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya K K, Kumar M S, Kushvaha S S 2019 J. Alloys Compd. 770 572Google Scholar

    [19]

    Popovici G, Xu G Y, Botchkarev A, Kim W, Tang H, Salvador A, Morkoç H, Strange R, White J O 1997 J. Appl. Phys. 82 4020Google Scholar

    [20]

    Eckey L, Gfug U V, Holst J, Hoffmann A, Kaschner A, Siegle H, Thomsen C, Schineller B, Heime K, Heuken M, Schön O, Beccard R 1998 J. Appl. Phys. 84 5828Google Scholar

    [21]

    Greenlee J D, Feigelson B N, Anderson T J, Tadjer M J, Hite J K, Mastro M A, Eddy C R, Hobart K D, Kub F J 2014 J. Appl. Phys. 116 063502Google Scholar

    [22]

    Huang Y, Chen X D, Fung S, Beling C D, Ling C C, Wei Z F, Xu S J, Zhi C Y 2004 J. Appl. Phys. 96 1120Google Scholar

    [23]

    Hwang C Y, Schurman M J, Mayo W E 1997 J. Electron. Mater. 26 243Google Scholar

    [24]

    Jeong J K, Choi J H, Hwang C S, Kim H J, Lee J H, Lee J H, Kim C S 2004 Appl. Phys. Lett. 84 2575Google Scholar

    [25]

    Ng H M, Doppalapudi D, Moustakas T D, Weimann N G, Eastman L F 1998 Appl. Phys. Lett. 73 821Google Scholar

    [26]

    Lee J H, Hahm S H, Lee J H, Bae S B, Lee K S, Cho Y H, Lee J L 2003 Appl. Phys. Lett. 83 917Google Scholar

    [27]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Wang B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [28]

    Lee C T, Lin Y J, Lin C H 2002 J. Appl. Phys. 92 3825Google Scholar

    [29]

    Gui Y, Yang L, Tian K, Zhang H, Fang S 2019 Sens. Actuators, B 288 104Google Scholar

    [30]

    Sun X, Li D, Jiang H, Li Z, Song H, Chen Y, Miao G 2011 Appl. Phys. Lett. 98 121117Google Scholar

    [31]

    Jhou Y D, Chang S J, Su Y K, Lee Y Y, Liu C H, Lee H C 2007 Appl. Phys. Lett. 91 103506Google Scholar

    [32]

    Golgir H R, Li D W, Keramatnejad K, Zou Q M, Xiao J, Wang F, Jiang L, Silvain J F, Lu Y F 2017 ACS Appl. Mater. Interfaces 9 21539Google Scholar

    [33]

    Müller A, Konstantinidis G, Androulidaki M, Dinescu A, Stefanescu A, Cismaru A, Neculoiu D, Pavelescu E, Stavrinidis A 2012 Thin Solid Films 520 2158Google Scholar

    [34]

    Xie F, Lu H, Xiu X, Chen D, Han P, Zhang R, Zheng Y 2011 Solid State Electron. 57 39Google Scholar

    [35]

    Osinsky A, Gangopadhyay S, Yang J W, Gaska R, Kuksenkov D, Temkin H, Shmagin I K, Chang Y C, Muth J F, Kolbas R M 1998 Appl. Phys. Lett. 72 551Google Scholar

    [36]

    Pant R, Shetty A, Chandan G, Roul B, Nanda K K, Krupanidhi S B 2018 ACS Appl. Mater. Interfaces 10 16918Google Scholar

    [37]

    Mukundan S, Mohan L, Chandan G, Roul B, Krupanidhi S B 2014 J. Appl. Phys. 116 204502Google Scholar

  • 图 1  不同制备温度缓冲层的未退火GaN薄膜的XRD图谱

    Figure 1.  The XRD pattern of unannealed GaN films with buffer layer fabricated at different temperature.

    图 2  不同制备温度缓冲层的未退火GaN薄膜的XRC半高全宽曲线

    Figure 2.  The FWHM of XRCs of unannealed GaN films with buffer layer fabricated at different temperature.

    图 3  不同制备温度缓冲层的未退火GaN薄膜的Raman光谱图

    Figure 3.  Raman spectra of unannealed GaN films with buffer layer fabricated at different temperature.

    图 4  未退火GaN薄膜的缓冲层制备温度与电子浓度和迁移率的关系曲线

    Figure 4.  Electron concentration and mobility of unannealed GaN films with buffer layer at different temperature.

    图 5  退火GaN薄膜的缓冲层制备温度与迁移率的关系曲线

    Figure 5.  Mobility of annealed GaN films with buffer layer at different temperature.

    图 6  缓冲层制备温度为875 ℃的退火GaN薄膜的XRC图谱 (a) (100)面; (b) (101)面

    Figure 6.  The XRCs of annealed GaN fim with buffer layer at 875 ℃: (a) (100); (b) (101).

    图 7  缓冲层制备温度为875 ℃的退火GaN薄膜的Raman光谱图

    Figure 7.  Raman spectra of annealed GaN fim with buffer layer at 875 ℃.

    图 8  缓冲层制备温度为875 ℃的退火GaN薄膜的微观区域SEM图和实物图 (a)表面SEM图; (b)截面SEM图; (c) 退火GaN薄膜样品的实物图

    Figure 8.  SEM images and picture of annealed GaN film with buffer layer at 875 ℃: (a) SEM image of surface; (b) cross sectional SEM image; (c) the picture of annealed GaN film sample.

    图 9  GaN薄膜的XPS图谱 (a)全谱; (b) N 1s带; (c) Ga 2p3/2带; (d) O 1s 带

    Figure 9.  XPS spectra of annealed GaN fim with buffer layer at 875 ℃: (a) General scan spectrum; (b) N 1s band; (c) Ga 2p3/2 band; (d) O 1s band.

    图 10  GaN薄膜的UV-Vis吸收光谱.

    Figure 10.  UV-Vis absorption spectrum of GaN film.

    图 11  退火GaN薄膜紫外探测器的I -V曲线.

    Figure 11.  The I -V curve of annealed GaN film ultraviolet photodetector.

    图 12  (a)退火GaN薄膜紫外探测器在不同光照强度下的光电流; (b)功率与光响应度的关系曲线

    Figure 12.  (a) Photocurrent of GaN film ultraviolet photodetector at different illumination intensity; (b) the power versus photoresponsivity curve of GaN fim ultraviolet photodetector.

    图 13  退火GaN薄膜紫外探测器在不同偏压下的电流以及光响应度 (a) 0 V; (b) 0.05 V; (c) 0.1 V; (d) 0.3 V; (e) 0.5 V; (f) 1 V; (g) 2 V; (h) 3 V; (i)不同偏压对应的光响应度大小

    Figure 13.  Current of annealed GaN films ultraviolet photodetector at different bias voltage: (a) 0 V; (b) 0.05 V; (c) 0.1 V; (d) 0.3 V; (e) 0.5 V; (f) 1 V; (g) 2 V; (h) 3 V. (i) The responsivity of photodetector at different bias voltage.

    图 14  退火GaN薄膜紫外探测器 (a)电流与时间的关系曲线; (b)时间与光电流上升的曲线; (c)时间与光电流下降的曲线

    Figure 14.  (a) Current versus time curve of annealed GaN film ultraviolet photodetector; (b) the time versus rise current curve of annealed GaN film ultraviolet photodetector; (c) the time versus fall current curve of annealed GaN film ultraviolet photodetector.

    表 1  不同缓冲层制备温度下获得的GaN薄膜的位错密度计算值

    Table 1.  Dislocation density of GaN films with buffer layer fabricated at different temperature.

    缓冲层制备
    温度/℃
    刃位错密度
    /(109 cm–2)
    螺位错密度
    /(109 cm–2)
    总位错密度
    /(1010 cm–2)
    8258.682.941.16
    8508.532.771.13
    8757.412.330.974
    9007.642.521.02
    9258.632.791.14
    DownLoad: CSV

    表 2  不同制备温度缓冲层的未退火GaN薄膜相对应的E2(high)声子散射峰半高全宽

    Table 2.  The full width at half maximum of E2 (high) phonon scattering peak of unannealed GaN fims with buffer layer at different temperature.

    缓冲层制备温度/℃
    825850875900925
    半高全宽/cm–118.813.31012.525.2
    DownLoad: CSV

    表 3  缓冲层制备温度为875 ℃的GaN薄膜退火前后的Hall数据对比

    Table 3.  Hall value of unannealed and annealed GaN films with buffer layer at 875 ℃.

    电阻率
    /(Ω·cm–1)
    迁移率
    /(cm2·V–1·s–1)
    载流子浓度
    /(1017 cm–3)
    退火前24.860.7133.524
    退火后5.25443.53.907
    DownLoad: CSV

    表 4  本工作GaN薄膜紫外光探测器光响应度与其他文献的对比

    Table 4.  Responsivity of GaN film ultraviolet photodetector in literature.

    GaN薄膜制备方法偏压/V光响应度
    /(A·W–1)
    文献
    金属有机化学气相沉积法00.03[4]
    金属有机化学气相沉积法50.108[32]
    金属有机化学气相沉积法2.50.37[33]
    氢化物外延法50.3[34]
    分子束外延法40.1[35]
    分子束外延法11.88[36]
    等离子增强化学气相沉积法50.20本工作
    DownLoad: CSV
  • [1]

    Liu L, Xia S, Diao Y, Lu F, Tian J 2020 Solid State Ionics 350 115327Google Scholar

    [2]

    Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X, Li S 2014 Nanoscale 6 12009Google Scholar

    [3]

    Zhang X, Liu Q, Liu B, Yang W, Li J, Niu P, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar

    [4]

    Peng M, Liu Y, Yu A, Zhang Y, Liu C, Liu J, Wu W, Zhang K, Shi X, Kou J, Zhai J, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [5]

    Chen X Y, Yip C T, Fung M K, Djurišić A B, Chan W K 2010 Appl. Phys. A 100 15Google Scholar

    [6]

    Li Y, Wang W, Li X, Huang L, Lin Z, Zheng Y, Chen X, Li G 2019 J. Alloys Compd. 771 1000Google Scholar

    [7]

    Deng G, Zhang Y, Yu Y, Yan L, Li P, Han X, Chen L, Zhao D, Du G 2018 Superlattice. Microstruct. 116 1Google Scholar

    [8]

    Liang Q, Wang R Z, Yang M Q, Ding Y, Wang C H 2020 Thin Solid Films 710 138266Google Scholar

    [9]

    Yang W J, Wang W L, Liu Z L, Li G Q 2015 Mater. Sci. Semicond. Process. 39 499Google Scholar

    [10]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Tanaka S, Amano H 2013 Phys. Status Solidi C 10 369Google Scholar

    [11]

    Bak S J, Mun D H, Jung K C, Park J H, Bae H J, Lee I W, Ha J S, Jeong T, Oh T S 2013 Electron. Mater. Lett. 9 367Google Scholar

    [12]

    Tran B T, Chang E Y, Lin K L, Luong T T, Yu H W, Huang M C, Chung C C, Trinh H D, Nguyen H Q, Nguyen C L, Luc Q H 2012 ECS Trans. 50 461Google Scholar

    [13]

    Huang W C, Chu C M, Wong Y Y, Chen K W, Lin Y K, Wu C H, Lee W I, Chang E Y 2016 Mater. Sci. Semicond. Process. 45 1Google Scholar

    [14]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [15]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [16]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth. Des. 19 2687Google Scholar

    [17]

    梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟 2020 物理学报 69 087801Google Scholar

    Liang Q, Wang R Z, Yang M Q, Wang C H, Liu J W 2020 Acta Phys. Sin. 69 087801Google Scholar

    [18]

    Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya K K, Kumar M S, Kushvaha S S 2019 J. Alloys Compd. 770 572Google Scholar

    [19]

    Popovici G, Xu G Y, Botchkarev A, Kim W, Tang H, Salvador A, Morkoç H, Strange R, White J O 1997 J. Appl. Phys. 82 4020Google Scholar

    [20]

    Eckey L, Gfug U V, Holst J, Hoffmann A, Kaschner A, Siegle H, Thomsen C, Schineller B, Heime K, Heuken M, Schön O, Beccard R 1998 J. Appl. Phys. 84 5828Google Scholar

    [21]

    Greenlee J D, Feigelson B N, Anderson T J, Tadjer M J, Hite J K, Mastro M A, Eddy C R, Hobart K D, Kub F J 2014 J. Appl. Phys. 116 063502Google Scholar

    [22]

    Huang Y, Chen X D, Fung S, Beling C D, Ling C C, Wei Z F, Xu S J, Zhi C Y 2004 J. Appl. Phys. 96 1120Google Scholar

    [23]

    Hwang C Y, Schurman M J, Mayo W E 1997 J. Electron. Mater. 26 243Google Scholar

    [24]

    Jeong J K, Choi J H, Hwang C S, Kim H J, Lee J H, Lee J H, Kim C S 2004 Appl. Phys. Lett. 84 2575Google Scholar

    [25]

    Ng H M, Doppalapudi D, Moustakas T D, Weimann N G, Eastman L F 1998 Appl. Phys. Lett. 73 821Google Scholar

    [26]

    Lee J H, Hahm S H, Lee J H, Bae S B, Lee K S, Cho Y H, Lee J L 2003 Appl. Phys. Lett. 83 917Google Scholar

    [27]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Wang B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [28]

    Lee C T, Lin Y J, Lin C H 2002 J. Appl. Phys. 92 3825Google Scholar

    [29]

    Gui Y, Yang L, Tian K, Zhang H, Fang S 2019 Sens. Actuators, B 288 104Google Scholar

    [30]

    Sun X, Li D, Jiang H, Li Z, Song H, Chen Y, Miao G 2011 Appl. Phys. Lett. 98 121117Google Scholar

    [31]

    Jhou Y D, Chang S J, Su Y K, Lee Y Y, Liu C H, Lee H C 2007 Appl. Phys. Lett. 91 103506Google Scholar

    [32]

    Golgir H R, Li D W, Keramatnejad K, Zou Q M, Xiao J, Wang F, Jiang L, Silvain J F, Lu Y F 2017 ACS Appl. Mater. Interfaces 9 21539Google Scholar

    [33]

    Müller A, Konstantinidis G, Androulidaki M, Dinescu A, Stefanescu A, Cismaru A, Neculoiu D, Pavelescu E, Stavrinidis A 2012 Thin Solid Films 520 2158Google Scholar

    [34]

    Xie F, Lu H, Xiu X, Chen D, Han P, Zhang R, Zheng Y 2011 Solid State Electron. 57 39Google Scholar

    [35]

    Osinsky A, Gangopadhyay S, Yang J W, Gaska R, Kuksenkov D, Temkin H, Shmagin I K, Chang Y C, Muth J F, Kolbas R M 1998 Appl. Phys. Lett. 72 551Google Scholar

    [36]

    Pant R, Shetty A, Chandan G, Roul B, Nanda K K, Krupanidhi S B 2018 ACS Appl. Mater. Interfaces 10 16918Google Scholar

    [37]

    Mukundan S, Mohan L, Chandan G, Roul B, Krupanidhi S B 2014 J. Appl. Phys. 116 204502Google Scholar

  • [1] Wang Li-Xuan, Li Ren-Jie, Liu Hui, Wang Peng-Yang, Shi Biao, Zhao Ying, Zhang Xiao-Dan. Limiting factors and improving solutions of P-I-N type tin-lead perovskite solar cells performance. Acta Physica Sinica, 2021, 70(11): 118402. doi: 10.7498/aps.70.20201678
    [2] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [3] Tan Zai-Shang, Wu Xiao-Meng, Fan Zhong-Yong, Ding Shi-Jin. Effect of thermal annealing on the structure and properties of plasma enhanced chemical vapor deposited SiCOH film. Acta Physica Sinica, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [4] Wang Bao-Zhu, Zhang Xiu-Qing, Zhang Ao-Di, Zhou Xiao-Ran, Bahadir Kucukgok, Na Lu, Xiao Hong-Ling, Wang Xiao-Liang, Ian T. Ferguson. Room-temperature thermoelectric properties of GaN thin films grown by metal organic chemical vapor deposition. Acta Physica Sinica, 2015, 64(4): 047202. doi: 10.7498/aps.64.047202
    [5] Hou Guo-Fu, Xue Jun-Ming, Yuan Yu-Jie, Zhang Xiao-Dan, Sun Jian, Chen Xin-Liang, Geng Xin-Hua, Zhao Ying. Key issues for high-efficiency silicon thin film solar cells prepared by RF-PECVD under high-pressure-depletion conditions. Acta Physica Sinica, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [6] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [7] Li Hong-Tao, Luo Yi, Xi Guang-Yi, Wang Lai, Jiang Yang, Zhao Wei, Han Yan-Jun, Hao Zhi-Biao, Sun Chang-Zheng. Thickness measurement of GaN films by X-ray diffraction. Acta Physica Sinica, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [8] Yuan Jin-She, Chen Guang-De. Instantaneous relaxation of photoconductivity in GaN film grown on vicinal sapphire substrate by MBE. Acta Physica Sinica, 2007, 56(7): 4218-4223. doi: 10.7498/aps.56.4218
    [9] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [10] Peng Dong-Sheng, Feng Yu-Chun, Wang Wen-Xin, Liu Xiao-Feng, Shi Wei, Niu Han-Ben. A new method to grow high quality GaN film by MOCVD. Acta Physica Sinica, 2006, 55(7): 3606-3610. doi: 10.7498/aps.55.3606
    [11] Yang Hui-Dong, Wu Chun-Ya, Zhao Ying, Xue Jun-Ming, Geng Xin-Hua, Xiong Shao-Zhen. Investigation on the oxygen contamination in the μc-Si∶H thin film deposited b y VHF-PECVD. Acta Physica Sinica, 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [12] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [13] Lai Tian-Shu, Fan Hai-Hua, Liu Zhen-Dong, Lin Wei-Zhu. Studies of broadband yellow luminescence of GaN. Acta Physica Sinica, 2003, 52(10): 2638-2641. doi: 10.7498/aps.52.2638
    [14] Lai Tian-Shu, Lin Wei-Zhu, Mo Dang. . Acta Physica Sinica, 2002, 51(5): 1149-1152. doi: 10.7498/aps.51.1149
    [15] NING ZHAO-YUAN, CHENG SHAN-HUA, YE CHAO. CHEMICAL BONDING STRUCTURE OF FLUORINATED AMORPHOUS CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [16] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA, KANG JIAN. STUDY ON α-C∶F FILMS DEPOSITED BY ELECTRON CYCLOTRONRESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [17] YUAN JIN-SHE, CHEN GUANG-DE, QI MING, LI AI-ZHEN, XU ZHUO. XPS AND AES INVESTIGATION OF GaN FILMS GROWN BY MBE. Acta Physica Sinica, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [18] ZHANG ZHI-HONG, GUO HUAI-XI, YU FEI-WEI, XIONG QI-HUA, YE MING-SHENG, FAN XIANG-JUN. PREPARATION OF CUBIC C3N4 THIN FILMS BY LOW-PRESSURE PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 1998, 47(6): 1047-1051. doi: 10.7498/aps.47.1047
    [19] LIU XIANG-NA, WU XIAO-WEI, BAO XI-MAO, HE YU-LIANG. PHOTOLUMINESCENCE FROM NANO-CRYSTALLITES OF SILICON FILMS PREPARED BY PECVD. Acta Physica Sinica, 1994, 43(6): 985-990. doi: 10.7498/aps.43.985
    [20] ZHANG FANG-QING, ZHANG YA-FEI, YANG YING-HU, LI JING-QI, CHEN GUANG-HUA, JIANG XIANG-LIU. PREPARATION OF DIAMOND FILMS BY DC ARC DISCHARGE AND IN SITU MEASUREMENTS OF THE PLASMA BY OPTICAL EMISSION SPECTRA. Acta Physica Sinica, 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
Metrics
  • Abstract views:  6379
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2021
  • Accepted Date:  30 December 2021
  • Available Online:  02 February 2022
  • Published Online:  05 May 2022

/

返回文章
返回