-
As one of the important non-destructive testing techniques for evaluating material performance degradation and stress state, magnetic Barkhausen noise (MBN) has broad application prospects. Clarifying the relationship between internal stress distribution and detection signal can provide important guidance for evaluating the stress state of material based on the MBN signal. In this work, by constructing the expression of Barkhausen noise excitation intensity related to stress value, combining with the signal attenuation effect during signal propagation, and using the layered model along the thickness direction, we establish the analytical model of MBN signal on the surface of the ferromagnetic plate with internal stress distribution. Based on the existing experimental results, it is confirmed that the proposed model can reflect the effects of the different uniform stresses in the ferromagnetic plate on the signal at different detection frequencies. For the ferromagnetic plate with internal stress distribution, the effects of its stress distribution, magnetic conductivity, electrical resistivity, and thickness on the surface MBN signal are discussed in detail based on the proposed model. The theoretical analysis in this work can be applied to the testing mechanism analysis of the MBN stress evaluation method.
-
Keywords:
- magnetic Barkhausen noise /
- non-destructive testing /
- stress distribution /
- analytical model
[1] Zhuang W Z, Halford G R 2001 Int. J. Fatigue 23 31Google Scholar
[2] Blaow M, Evans J T, Shaw B A 2005 Acta Mater. 53 279Google Scholar
[3] 时朋朋 2021 力学学报 53 3341Google Scholar
Shi P P 2021 Chin. J. Theor. Appl. Mechan. 53 3341Google Scholar
[4] Moorthy V, Shaw B A, Hopkins P 2006 J. Magn. Magn. Mater. 299 362Google Scholar
[5] 时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar
Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar
[6] Shi P P, Su S Q, Chen Z M 2020 J. Nondestruct. Eval. 39 1Google Scholar
[7] 郑阳, 张鑫, 周进节, 谭继东 2021 仪器仪表学报 42 13Google Scholar
Zheng Y, Zhang X, Zhou J J, Tan J D 2021 Chin. J. Scientif. Instrum. 42 13Google Scholar
[8] 王志, 何存富, 刘秀成, 陈彬, 宋亚虎, 王博 2021 实验力学 36 43Google Scholar
Wang Z, He C F, Li X C, Chen B, Song Y H, Wang B 2021 J. Exp. Mech. 36 43Google Scholar
[9] 谭君洋, 夏丹, 董世运, 吕瑞阳, 徐滨士 2021 中国表面工程 34 8Google Scholar
Tan J Y, Xia D, Dong S Y, Lv R Y, Xu B S 2021 China Surface Engineering 34 8Google Scholar
[10] Kinser E R, Lo C C H, Barsic A J, Jiles D C 2005 IEEE Trans. Magn. 41 3292Google Scholar
[11] Jr Aranas C, He Y L, Podlesny M 2018 Mater. Charact. 146 243Google Scholar
[12] Jiles D C, Suominen L 1994 IEEE Trans. Magn. 30 4924Google Scholar
[13] Jagadish C, Clapham L, Atherton D L 1990 IEEE Trans. Magn. 26 1160Google Scholar
[14] Krause T W, Pattantyus A, Atherton D L 1995 IEEE Trans. Magn. 31 3376Google Scholar
[15] Mierczak L, Jiles D C, Fantoni G 2010 IEEE Trans. Magn. 47 459Google Scholar
[16] Santa-aho S, Vippola M, Saarinen T, Isakov M, Sorsa A, Lindgren M, Leiviskä k, Lepistö T 2012 J. Mater. Sci. 47 6420Google Scholar
[17] Desvaux S, Duquennoy M, Gualandri J, Ouaftouh M, Ourak M 2005 Nondestruct. Test. Eva. 20 9Google Scholar
[18] Lasaosa A, Gurruchaga K, García Navas V, Martínez-de-Guereñu A 2014 Adv. Mater. Res. 996 373Google Scholar
[19] Kypris O, Nlebedim I C, Jiles D C 2014 J. Appl. Phys. 115 083906Google Scholar
[20] Kypris O, Nlebedim I C, Jiles D C 2013 IEEE Trans. Magn. 49 3893Google Scholar
[21] Shi P P 2020 Chin. Phys. Lett. 37 087502Google Scholar
[22] Sablik M J, Jiles D C 1988 J. Appl. Phys. 64 5402Google Scholar
[23] Shi P P, Bai P G, Chen H E, Su S Q, Chen Z M 2020 J. Magn. Magn. Mater. 504 166669Google Scholar
[24] Shi P P 2020 J. Appl. Phys. 128 115102Google Scholar
[25] Ghanei S, Kashefi M, Mazinani M 2014 J. Magn. Magn. Mater. 356 103Google Scholar
[26] Stupakov O, Melikhov Y 2014 IEEE Trans. Magn. 50 6100104Google Scholar
-
图 8 不同应力分布情形下的MBN信号总强度 (a) 沿板厚度方向的应力分布; (b)不同应力分布下MBN信号总强度随板厚的变化
Figure 8. Total MBN signal strength under the different stress distribution along the thickness of the ferromagnetic plate: (a) Four different stress distributions along thickness direction of the plate; (b) the total signal intensity versus thickness in these four cases.
-
[1] Zhuang W Z, Halford G R 2001 Int. J. Fatigue 23 31Google Scholar
[2] Blaow M, Evans J T, Shaw B A 2005 Acta Mater. 53 279Google Scholar
[3] 时朋朋 2021 力学学报 53 3341Google Scholar
Shi P P 2021 Chin. J. Theor. Appl. Mechan. 53 3341Google Scholar
[4] Moorthy V, Shaw B A, Hopkins P 2006 J. Magn. Magn. Mater. 299 362Google Scholar
[5] 时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar
Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar
[6] Shi P P, Su S Q, Chen Z M 2020 J. Nondestruct. Eval. 39 1Google Scholar
[7] 郑阳, 张鑫, 周进节, 谭继东 2021 仪器仪表学报 42 13Google Scholar
Zheng Y, Zhang X, Zhou J J, Tan J D 2021 Chin. J. Scientif. Instrum. 42 13Google Scholar
[8] 王志, 何存富, 刘秀成, 陈彬, 宋亚虎, 王博 2021 实验力学 36 43Google Scholar
Wang Z, He C F, Li X C, Chen B, Song Y H, Wang B 2021 J. Exp. Mech. 36 43Google Scholar
[9] 谭君洋, 夏丹, 董世运, 吕瑞阳, 徐滨士 2021 中国表面工程 34 8Google Scholar
Tan J Y, Xia D, Dong S Y, Lv R Y, Xu B S 2021 China Surface Engineering 34 8Google Scholar
[10] Kinser E R, Lo C C H, Barsic A J, Jiles D C 2005 IEEE Trans. Magn. 41 3292Google Scholar
[11] Jr Aranas C, He Y L, Podlesny M 2018 Mater. Charact. 146 243Google Scholar
[12] Jiles D C, Suominen L 1994 IEEE Trans. Magn. 30 4924Google Scholar
[13] Jagadish C, Clapham L, Atherton D L 1990 IEEE Trans. Magn. 26 1160Google Scholar
[14] Krause T W, Pattantyus A, Atherton D L 1995 IEEE Trans. Magn. 31 3376Google Scholar
[15] Mierczak L, Jiles D C, Fantoni G 2010 IEEE Trans. Magn. 47 459Google Scholar
[16] Santa-aho S, Vippola M, Saarinen T, Isakov M, Sorsa A, Lindgren M, Leiviskä k, Lepistö T 2012 J. Mater. Sci. 47 6420Google Scholar
[17] Desvaux S, Duquennoy M, Gualandri J, Ouaftouh M, Ourak M 2005 Nondestruct. Test. Eva. 20 9Google Scholar
[18] Lasaosa A, Gurruchaga K, García Navas V, Martínez-de-Guereñu A 2014 Adv. Mater. Res. 996 373Google Scholar
[19] Kypris O, Nlebedim I C, Jiles D C 2014 J. Appl. Phys. 115 083906Google Scholar
[20] Kypris O, Nlebedim I C, Jiles D C 2013 IEEE Trans. Magn. 49 3893Google Scholar
[21] Shi P P 2020 Chin. Phys. Lett. 37 087502Google Scholar
[22] Sablik M J, Jiles D C 1988 J. Appl. Phys. 64 5402Google Scholar
[23] Shi P P, Bai P G, Chen H E, Su S Q, Chen Z M 2020 J. Magn. Magn. Mater. 504 166669Google Scholar
[24] Shi P P 2020 J. Appl. Phys. 128 115102Google Scholar
[25] Ghanei S, Kashefi M, Mazinani M 2014 J. Magn. Magn. Mater. 356 103Google Scholar
[26] Stupakov O, Melikhov Y 2014 IEEE Trans. Magn. 50 6100104Google Scholar
Catalog
Metrics
- Abstract views: 5653
- PDF Downloads: 120
- Cited By: 0