搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体直接冷却薄板条介质温度及应力的解析表达

李策 冯国英 杨火木

引用本文:
Citation:

流体直接冷却薄板条介质温度及应力的解析表达

李策, 冯国英, 杨火木

The analytic expressions of temperature and stress in directly liquid cooled thin slab laser

Li Ce, Feng Guo-Ying, Yang Huo-Mu
PDF
导出引用
  • 基于对流传热和热传导原理, 建立了流体直接冷却均匀抽运薄板条激光工作介质的热效应分析模型, 采用平面应力近似和最小功原理, 得到了板条工作介质内部温度分布和应力分布的解析表达式. 研究了不同流道厚度时对流热交换系数和冷却液温升与流体流速的关系, 分析了流道厚度对工作介质的温度分布和应力分布的影响规律, 讨论了之字形和直通光路时, 热致波前畸变随产热功率的变化趋势. 结果表明: 层流和湍流时, 较厚的流道可以实现更好的热管理效率; 增益介质中的热分布关于中心平面对称, 纵向最大温升出现在出水口端, 最大应力畸变集中在板条两端及其侧边; 流道厚度较大时, 工作介质更易形成一维的温度梯度, 产生的应力更小; 之字形光路可以明显缓解热光效应导致的波前畸变.
    In this paper, based on the convective heat transfer and conduction principle, the thermal effect analysis model of the directly liquid cooled uniformly pumped thin slab laser is established. The approximate plane stress and the principle of minimum are introduced to describe thermal stress distribution in the thin slab. Firstly, the relationships between the flow velocities in different flow channel thickness values and the convection heat transfer coefficients and also the relationship between flow velocity and coolant temperature rise are studied. Moreover, the influences of different flow channel thickness values on temperature field and thermal stress distribution are analyzed. Finally, the variation trends of wave-front phase distortion with the change of heat power in the case of Zig-zag path and direct path are investigated, respectively. The results reveal that thicker flow channel can achieve stronger heat treatment effects in an appropriate range of the cooled liquid flow rate, and the thermal profile is symmetrical with respect to the center plane of slab. In addition, the longitudinal maximum temperature rise occurs in the outlet; the maximum stress distortions centralize on the both ends and partial sides of slab. It is worthy to mention that the one-dimensional temperature gradient and smaller stress form more probably for thicker flow channel., Furthermore, zig-zag path can alleviate obviously wave-front aberration due to thermo-optic effect. In this paper the thermal effect of the liquid direct cooled thin slab laser is investigated. The research results are beneficial to the design and optimization of the directly liquid cooled thin slab laser.
      通信作者: 冯国英, guoing_feng@scu.edu.cn
    • 基金项目: 国家自然科学基金重大项目(批准号: 60890200)和国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: 10976017, 61505129) 资助的课题.
      Corresponding author: Feng Guo-Ying, guoing_feng@scu.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 60890200) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. 10976017, 61505129).
    [1]

    Huai X L, Li Z G 2008 Appl. Phys. Lett. 92 041121

    [2]

    Mu J, Feng G Y, Yang H M, Tang C, Zhou S H 2013 Acta Phys. Sin. 62 124204 (in Chinese) [母健, 冯国英, 杨火木, 唐淳, 周寿桓 2013 物理学报 62 124204]

    [3]

    Ichiro S, Yoichi S, Sunao K, Voicu L, Takunori T, Akio I, Kunio Y 2002 Opt. Lett. 27 234

    [4]

    He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 94217 (in Chinese) [. 何广源, 郭靖, 焦中兴, 王彪 2012 物理学报 61 94217]

    [5]

    Foster, J D, Osterink L M 1970 J. Appl. Phys. 41 3656

    [6]

    Osterink L M, Foster J D 1968 Appl. Phys. Lett. 12 128

    [7]

    Yang H M, Feng G Y, Zhou S H 2011 Opt. Laser. Technol. 43 1006

    [8]

    Zhou S H 2005 Chin. J. Quantum. Elect. 22 497 (in Chinese)[周寿桓 2005 量子电子学报 22 497]

    [9]

    Willian S M 1972 US Patent 36 33126 [1978-01-04]

    [10]

    Perry M D, Banks P S, Zweiback J, Schleicher R W 2008 US Patent 01 61365 [2003-08-28]

    [11]

    Mandl A, Klimek D E 2010 Conference on Lasers and Electro-Optics San Jose, California United States, May 16-21, 2010

    [12]

    Fu X, Liu Q, Li P, Gong M 2013 Appl. Phys. B 111 517

    [13]

    Li P, Liu Q, Fu X, Gong M 2013 Chin. Opt. Lett. 11 041408

    [14]

    Fu X, Li P, Liu Q, Gong M 2014 Opt. Express. 22 18421

    [15]

    Li P, Fu X, Liu Q, Gong M 2015 Appl. Phys. B 119 371

    [16]

    Fu X, Liu Q, Li P, Huang L, Gong M 2015 Opt. Express 23 18458

    [17]

    Ye Z, Cai Z, Tu B, Wang X, Shang J, Yu Y, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 92550 T

    [18]

    Ye Z, Cai Z, Tu B, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 967121

    [19]

    Shah P K, London A L 1978 Laminar Flow Forced Convection in Ducts (London: Academic Press)

    [20]

    Gnielinski V 1976 Int. Chem. Eng. 16 359

    [21]

    Bruesselbach H, Sumida D S 2005 IEEE J. Sel. Top. Quant. 11 600

    [22]

    Krupke W, Shinn M, Marion J, Caird J, Stokowski S 1986 JOSA B 3 102

    [23]

    Chung T, Bass M 2007 Appl. Opt. 46 581

  • [1]

    Huai X L, Li Z G 2008 Appl. Phys. Lett. 92 041121

    [2]

    Mu J, Feng G Y, Yang H M, Tang C, Zhou S H 2013 Acta Phys. Sin. 62 124204 (in Chinese) [母健, 冯国英, 杨火木, 唐淳, 周寿桓 2013 物理学报 62 124204]

    [3]

    Ichiro S, Yoichi S, Sunao K, Voicu L, Takunori T, Akio I, Kunio Y 2002 Opt. Lett. 27 234

    [4]

    He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 94217 (in Chinese) [. 何广源, 郭靖, 焦中兴, 王彪 2012 物理学报 61 94217]

    [5]

    Foster, J D, Osterink L M 1970 J. Appl. Phys. 41 3656

    [6]

    Osterink L M, Foster J D 1968 Appl. Phys. Lett. 12 128

    [7]

    Yang H M, Feng G Y, Zhou S H 2011 Opt. Laser. Technol. 43 1006

    [8]

    Zhou S H 2005 Chin. J. Quantum. Elect. 22 497 (in Chinese)[周寿桓 2005 量子电子学报 22 497]

    [9]

    Willian S M 1972 US Patent 36 33126 [1978-01-04]

    [10]

    Perry M D, Banks P S, Zweiback J, Schleicher R W 2008 US Patent 01 61365 [2003-08-28]

    [11]

    Mandl A, Klimek D E 2010 Conference on Lasers and Electro-Optics San Jose, California United States, May 16-21, 2010

    [12]

    Fu X, Liu Q, Li P, Gong M 2013 Appl. Phys. B 111 517

    [13]

    Li P, Liu Q, Fu X, Gong M 2013 Chin. Opt. Lett. 11 041408

    [14]

    Fu X, Li P, Liu Q, Gong M 2014 Opt. Express. 22 18421

    [15]

    Li P, Fu X, Liu Q, Gong M 2015 Appl. Phys. B 119 371

    [16]

    Fu X, Liu Q, Li P, Huang L, Gong M 2015 Opt. Express 23 18458

    [17]

    Ye Z, Cai Z, Tu B, Wang X, Shang J, Yu Y, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 92550 T

    [18]

    Ye Z, Cai Z, Tu B, Wang K, Gao Q, Tang C, Liu C 2015 International Society for Optics and Photonics 967121

    [19]

    Shah P K, London A L 1978 Laminar Flow Forced Convection in Ducts (London: Academic Press)

    [20]

    Gnielinski V 1976 Int. Chem. Eng. 16 359

    [21]

    Bruesselbach H, Sumida D S 2005 IEEE J. Sel. Top. Quant. 11 600

    [22]

    Krupke W, Shinn M, Marion J, Caird J, Stokowski S 1986 JOSA B 3 102

    [23]

    Chung T, Bass M 2007 Appl. Opt. 46 581

  • [1] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [2] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型. 物理学报, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [3] 肖凯博, 郑建刚, 蒋新颖, 蒋学君, 吴文龙, 严雄伟, 王振国, 郑万国. 高重复频率水冷Nd:YAG激活镜放大器的温度特性. 物理学报, 2021, 70(3): 034203. doi: 10.7498/aps.70.20201042
    [4] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [5] 钟振, 张腾, 张杰, 陈世国. “嫦娥5号”登陆候选地Mons Rümker的光照与温度特征分析. 物理学报, 2020, 69(11): 119601. doi: 10.7498/aps.69.20200114
    [6] 姚强强, 王启晗, 冯池, 陈思, 金光勇, 董渊. 数值模拟抽运分布对端泵激光器晶体热透镜球差的影响. 物理学报, 2018, 67(17): 174204. doi: 10.7498/aps.67.20180113
    [7] 张兴刚, 戴丹. 二维颗粒堆积中压力问题的格点系统模型. 物理学报, 2017, 66(20): 204501. doi: 10.7498/aps.66.204501
    [8] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析. 物理学报, 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [9] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [10] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布. 物理学报, 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [11] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [12] 王增, 董刚, 杨银堂, 李建伟. 考虑温度分布效应的非对称RLC树时钟偏差研究. 物理学报, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [13] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [14] 杨永明, 许启明, 过 振. 不同抽运光分布下端面抽运固体激光器中晶体的端面温度分布研究. 物理学报, 2008, 57(1): 223-229. doi: 10.7498/aps.57.223
    [15] 文玉华, 邵桂芳, 朱梓忠. 金属纳米线应力分布特征的原子级模拟研究. 物理学报, 2008, 57(2): 1013-1018. doi: 10.7498/aps.57.1013
    [16] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析. 物理学报, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [17] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响. 物理学报, 2003, 52(9): 2194-2199. doi: 10.7498/aps.52.2194
    [18] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究. 物理学报, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [19] 田洪涛, 陈 朝. 连续激光诱导Zn/InP掺杂过程中温度分布的解析计算. 物理学报, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [20] 郑瑞伦, 陈洪, 刘俊. 矩形激光脉冲辐照下金属板材料温度分布研究. 物理学报, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
计量
  • 文章访问数:  5206
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-01
  • 修回日期:  2015-01-02
  • 刊出日期:  2016-03-05

/

返回文章
返回