Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells

Sun Meng-Jie He Zhi-Qun Zheng Yi-Fan Shao Yu-Chuan

Citation:

Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells

Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan
PDF
HTML
Get Citation
  • Organic-inorganic hybrid perovskite solar cell devices have received wide attention because of their high efficiency, and interface problem is one of the key problems in the preparation of perovskite solar cells. An efficient double-layered ethylene diamine tetraacetic acid (EDTA)/SnO2 composite structure, the ultrathin EDTA layer in contact with ITO electrode and an SnO2 layer interfaced with the perovskite, is developed as an electron-transport layer (ETL) in the preparation of perovskite solar cells. It is interesting that the surface morphology of the top SnO2 side of the composite ETL can be finely adjusted by tuning the underneath EDTA layer. These control the nucleation process in crystallization of the perovskite layer and adjust carrier extraction process between the electron transport and perovskite layers. High performance perovskite solar cells having a certified power conversion efficiency of 20.2% with negligible hysteresis are achieved.
      Corresponding author: Zheng Yi-Fan, yifanzheng@siom.ac.cn
    • Funds: Project supported by the National Key R&D program of China (Grant No. 2018YFE0118000), National Natural Science Foundation of China (Grant Nos. 52103279, 62104234), and Shanghai Sailing Program (Grant No. 21YF1454000).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2022-2-14]

    [3]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [4]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [5]

    Dong Q, Wang M, Zhang Q, Chen F, Zhang S, Bian J, Ma T, Wang L, Shi Y 2017 Nano Energy 38 358Google Scholar

    [6]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [7]

    Yang J, Siempelkamp B D, Mosconi E, De Angelis F, Kelly T L 2015 Chem. Mater. 27 4229Google Scholar

    [8]

    Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T 2015 J. Phys. Chem. C 119 10212

    [9]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [10]

    Sun M, Liang C, Zhang H, Ji C, Sun F, You F, Jing X, He Z 2018 J. Mater. Chem. A 6 24793Google Scholar

    [11]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [12]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [13]

    Yang G, Tao H, Qin P, Ke W, Fang G 2016 J. Mater. Chem. A 4 3970Google Scholar

    [14]

    Wang F, Zhang Y, Yang M, Du J, Xue L, Yang L, Fan L, Sui Y, Yang J, Zhang X 2019 Nano Energy 63 103825Google Scholar

    [15]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C-S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [16]

    Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar

    [17]

    Ma J, Yang G, Qin M, Zheng X, Lei H, Chen C, Chen Z, Guo Y, Han H, Zhao X, Fang G 2017 Adv. Sci. 4 1700031Google Scholar

    [18]

    Li N, Niu X, Pei F, Liu H, Cao Y, Liu Y, Xie H, Gao Y, Chen Q, Mo F, Zhou H 2019 Sol. RRL 4 1900217

    [19]

    Hafer E, Holzgrabe U, Kraus K, Adams K, Hook J M, Diehl B 2020 Magnetic Resonance in Chemistry 58 653Google Scholar

    [20]

    Li X, Liu X, Zhang W, Wang H-Q, Fang J 2017 Chem. Mater. 29 4176Google Scholar

    [21]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S 2018 Nat. Commun. 9 3239Google Scholar

    [22]

    Li X, Zhang W, Wang X, Wu Y, Gao F, Fang J 2015 J. Mater. Chem. A 3 504Google Scholar

    [23]

    Li X, Zhang W, Wang X, Gao F, Fang J 2014 ACS Appl. Mater. Interfaces 6 20569Google Scholar

    [24]

    Pham H T, Duong T, Rickard W D A, Kremer F, Weber K J, Wong-Leung J 2019 J. Phys. Chem. C 123 26718Google Scholar

    [25]

    Xie L Q, Chen L, Nan Z A, Lin H X, Wang T, Zhan D P, Yan J W, Mao B W, Tian Z Q 2017 J. Am. Chem. Soc. 139 3320Google Scholar

    [26]

    Turren-Cruz S-H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [27]

    Warren B E 1990 X-Ray Diffraction (Second Edition) (New York: Dover Publication)

    [28]

    Guo Z, He Z, Sun M, Zhang H, Xu Y, Li X, Liang C, Jing X 2018 Polymer 153 398Google Scholar

    [29]

    Mitchell G R, Windle A H 1982 Polymer 23 1269Google Scholar

    [30]

    Zhao L, Li Q, Hou C-H, Li S, Yang X, Wu J, Zhang S, Hu Q, Wang Y, Zhang Y, Jiang Y, Jia S, Shyue J-J, Russell T P, Gong Q, Hu X, Zhu R 2022 J. Am. Chem. Soc. 144 1700Google Scholar

    [31]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [32]

    Son D-Y, Lee J-W, Choi Y J, Jang I-H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N-G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    Kim M, Kim G-H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [34]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

  • 图 1  使用不同EDTA排布方法制备的PSCs的J-V特性图

    Figure 1.  J-V characteristics of PSCs with different arrangement mode of using EDTA.

    图 2  在ITO电极上通过旋涂的方法制备EDTA/SnO2双层ETL的示意图

    Figure 2.  A schematic diagram of the double-layered EDTA/SnO2 composite layer prepared via spin-coating of EDTA and SnO2 in sequence on top of an ITO electrode.

    图 3  在不同EDTA溶液浓度的双层EDTA/SnO2复合ETL上制备的钙钛矿薄膜样品的SEM图像 (a) 无EDTA (b) 0.1 mg/mL (c) 0.15 mg/mL (d) 0.2 mg/mL (e) 0.3 mg/mL. (f)使用Image-Pro软件根据(a)—(e)进行计算得出的粒径分布

    Figure 3.  SEM top surface images of perovskite film specimens fabricated on double-layered EDTA/SnO2 composite ETLs with different EDTA precursors: (a) No EDTA; (b) 0.1 mg/mL; (c) 0.15 mg/mL; (d) 0.2 mg/mL; (e) 0.3 mg/mL; (f) particle size distribution calculated according to (a)–(e) using Image-Pro software.

    图 4  沉积在双层EDTA (mg/mL)/SnO2复合膜上钙钛矿样品的X射线衍射图, EDTA溶液浓度为0—0.3 mg/mL

    Figure 4.  X-ray diffraction diagrams from perovskite specimens deposited on double-layered EDTA (mg/ml)/SnO2 composite films of varying EDTA concentration ranging from 0 to 0.3 mg/mL as indicated.

    图 5  SnO2薄膜的AFM图像 (a)在ITO衬底上, 在有不同厚度的EDTA中间层的ITO/EDTA衬底上, 使用的EDTA溶液浓度分别为(b) 0.1, (c) 0.15, (d) 0.2以及(e) 0.3 mg/mL

    Figure 5.  AFM images of SnO2 films on an ITO substrate (a) or a substrate having EDTA interlayer with a concentration of (b) 0.1, (c) 0.15, (d) 0.2, and (e) 0.3 mg/mL.

    图 6  在使用不同浓度的EDTA前驱体溶液的EDTA/SnO2复合ETL上制备的钙钛矿薄膜的 (a)吸收光谱; (b) Tauc-Plot图分析光学带隙(Eg); (c)稳态PL光谱(479 nm激发); (d) TRPL光谱(800 nm监测)

    Figure 6.  (a) Absorbance spectra, (b) Tauc plot to analyze optical band gap (Eg), (c) steady-state PL spectra (excited at 479 nm), and (d) TRPL spectra (excited at 479 nm and monitored at 800 nm) of perovskite films with different concentration of EDTA precursors.

    图 7  使用不同厚度的EDTA中间层构成的EDTA/SnO2复合ETL的PSCs的性能 (a) J-V特性曲线; (b) EQE光谱; (c) 暗电流曲线以及(d) Device 0和3稳定在最大功率点处输出功率和光电流测量

    Figure 7.  Performance of PSCs: (a) J-V characteristics under a standard solar illumination; (b) EQE spectra; (c) J-V characteristics under darkness measured from Device 0 to Device 4, and (d) Stabilized PCEs and J at the maximum power point measured from Device 0 and Device 3.

    图 8  不同EDTA前驱体浓度的EDTA/SnO2复合ETL上制备的总计150个器件的VOC, JSC, FF, PCE的统计图

    Figure 8.  Statistical graph of VOC, JSC, FF, and PCE of 150 cells prepared on EDTA/SnO2 composite ETLs with different concentration of EDTA precursor.

    表 1  用不同方法使用EDTA制备ETL的器件的光伏参数表

    Table 1.  Photovoltaic parameters derived from J-V measurements of devices prepared with different ways of using EDTA.

    (ITO)/ETLVOC/
    V
    JSC/

    (mA·cm–2)
    FF
    /%
    PCE
    /%
    SnO21.04723.2075.4218.32
    EDTA(0.2 mg/mL)1.04421.9771.6316.43
    SnO2: EDTAa1.07723.0776.6719.05
    SnO2/EDTA (0.2 mg/mL)1.05923.5578.5918.05
    EDTA (0.2 mg/mL)/SnO21.06823.6581.3720.55
    a 溶液中SnO2∶EDTA质量比为133.5∶1.
    DownLoad: CSV

    表 2  EDTA/SnO2表面钙钛矿薄膜的结晶特性

    Table 2.  The crystallization of the perovskite films on top of the EDTA/SnO2 surface.

    EDTA
    concentration/

    (mg·ML–1)
    Perovskite films
    SEM X-ray diffraction
    Grain size/
    nm
    2θ at (100)/
    (°)
    Intensity
    at (100)
    L at (100)/
    nm
    0557 14.000.543516
    0.178414.000.671765
    0.1583414.000.839811
    0.292514.001.000888
    0.370414.000.756664
    DownLoad: CSV

    表 3  由沉积在纯SnO2表面或EDTA/SnO2复合表面的钙钛矿薄膜的TRPL光谱的双指数拟合得到的衰减时间

    Table 3.  Decay times obtained by a biexponential fit of TRPL spectra from perovskite films deposited on a pure SnO2 surface or on EDTA/SnO2 composite surfaces.

    EDTA
    concentration/

    (mg·mL–1)
    τ1/nsA1/% aτ2/nsA2/% aτavg/ns
    048.770.2745.429.8652.3
    0.138.378.1710.921.9602.4
    0.1536.878.1484.421.9389.0
    0.233.881.3465.518.7361.9
    0.335.380.9659.619.1544.6
    aAi is the fraction of τi component.
    DownLoad: CSV

    表 4  在标准太阳模拟光源下由J-V测量得到的PSCs详细光伏参数表

    Table 4.  Photovoltaic parameters derived from J-V measurements of devices prepared with different based on reverse and forward scans under standard illumination.

    DevicesScan directionVOC/VJSC/
    (mA·cm–2)
    FF/%PCE/%H-index/
    %
    RPRS/
    Ω
    Device 0RS1.04723.2075.3518.38.2537573.64
    (control)FS1.05223.0369.3216.79
    Device 1RS1.06223.4277.5319.286.9544093.26
    FS1.04723.1274.1217.94
    Device 2RS1.06823.6179.6020.073.9946833.02
    FS1.06323.4177.4219.27
    Device 3RS1.06823.6581.3720.552.5355372.88
    FS1.06423.4880.1820.03
    Device 4RS1.05723.6078.4919.586.6951353.19
    FS1.05123.2274.8818.27
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2022-2-14]

    [3]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [4]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [5]

    Dong Q, Wang M, Zhang Q, Chen F, Zhang S, Bian J, Ma T, Wang L, Shi Y 2017 Nano Energy 38 358Google Scholar

    [6]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [7]

    Yang J, Siempelkamp B D, Mosconi E, De Angelis F, Kelly T L 2015 Chem. Mater. 27 4229Google Scholar

    [8]

    Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T 2015 J. Phys. Chem. C 119 10212

    [9]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [10]

    Sun M, Liang C, Zhang H, Ji C, Sun F, You F, Jing X, He Z 2018 J. Mater. Chem. A 6 24793Google Scholar

    [11]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [12]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [13]

    Yang G, Tao H, Qin P, Ke W, Fang G 2016 J. Mater. Chem. A 4 3970Google Scholar

    [14]

    Wang F, Zhang Y, Yang M, Du J, Xue L, Yang L, Fan L, Sui Y, Yang J, Zhang X 2019 Nano Energy 63 103825Google Scholar

    [15]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C-S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [16]

    Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar

    [17]

    Ma J, Yang G, Qin M, Zheng X, Lei H, Chen C, Chen Z, Guo Y, Han H, Zhao X, Fang G 2017 Adv. Sci. 4 1700031Google Scholar

    [18]

    Li N, Niu X, Pei F, Liu H, Cao Y, Liu Y, Xie H, Gao Y, Chen Q, Mo F, Zhou H 2019 Sol. RRL 4 1900217

    [19]

    Hafer E, Holzgrabe U, Kraus K, Adams K, Hook J M, Diehl B 2020 Magnetic Resonance in Chemistry 58 653Google Scholar

    [20]

    Li X, Liu X, Zhang W, Wang H-Q, Fang J 2017 Chem. Mater. 29 4176Google Scholar

    [21]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S 2018 Nat. Commun. 9 3239Google Scholar

    [22]

    Li X, Zhang W, Wang X, Wu Y, Gao F, Fang J 2015 J. Mater. Chem. A 3 504Google Scholar

    [23]

    Li X, Zhang W, Wang X, Gao F, Fang J 2014 ACS Appl. Mater. Interfaces 6 20569Google Scholar

    [24]

    Pham H T, Duong T, Rickard W D A, Kremer F, Weber K J, Wong-Leung J 2019 J. Phys. Chem. C 123 26718Google Scholar

    [25]

    Xie L Q, Chen L, Nan Z A, Lin H X, Wang T, Zhan D P, Yan J W, Mao B W, Tian Z Q 2017 J. Am. Chem. Soc. 139 3320Google Scholar

    [26]

    Turren-Cruz S-H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [27]

    Warren B E 1990 X-Ray Diffraction (Second Edition) (New York: Dover Publication)

    [28]

    Guo Z, He Z, Sun M, Zhang H, Xu Y, Li X, Liang C, Jing X 2018 Polymer 153 398Google Scholar

    [29]

    Mitchell G R, Windle A H 1982 Polymer 23 1269Google Scholar

    [30]

    Zhao L, Li Q, Hou C-H, Li S, Yang X, Wu J, Zhang S, Hu Q, Wang Y, Zhang Y, Jiang Y, Jia S, Shyue J-J, Russell T P, Gong Q, Hu X, Zhu R 2022 J. Am. Chem. Soc. 144 1700Google Scholar

    [31]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [32]

    Son D-Y, Lee J-W, Choi Y J, Jang I-H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N-G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    Kim M, Kim G-H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [34]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [4] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [5] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Sui Guo-Min, Yan Gui-Jun, Yang Guang, Zhang Bao, Feng Ya-Qing. Theoretical investigation on structure and optoelectronic performance of two-dimensional fluorbenzidine perovskites. Acta Physica Sinica, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [11] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [13] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [15] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [17] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [18] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei. Effect of solvent on the perovskite thin film morphology and crystallinity. Acta Physica Sinica, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [20] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
Metrics
  • Abstract views:  7238
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2022
  • Accepted Date:  08 March 2022
  • Available Online:  24 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回