Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal

Zhu Yong-Qi Liu Yu-Xue Shi Yang Wu Cong-Cong

Citation:

High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal

Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong
PDF
HTML
Get Citation
  • In recent years, CH(NH2)2PbI3 (FAPbI3) has received extensive attention due to the suitable band gap, becoming the most attractive photoelectric functional material in perovskite solar cells. However, the traditional perovskite layer prepared by formamidine iodide (FAI) and lead iodide (PbI2) has inaccurate stoichiometric ratio, high defect density, low stability, and low crystallinity, which makes it challenging to improve the performance of perovskite solar cells further. In this paper, the perovskite film prepared by FAPbI3 single crystal has high crystallinity, high stability, accurate stoichiometric ratio and low defect density. The single crystal derived perovskite film has a large grain size and few grain boundaries, resulting in fewer defects in the grain boundaries, which improves the short-circuit current density (JSC) and open-circuit voltage (VOC) of perovskite solar cells, and greatly improves the photoelectric conversion efficiency. This work provides an efficient strategy for fabricating perovskite solar cells with high stability, high crystallinity, and low defect density.
      Corresponding author: Wu Cong-Cong, ccwu@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62004064) and the Key R&D Program of Hubei Province, China (Grant No. 2022BAA096).
    [1]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H 2014 Energy Environ. Sci. 7 982Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif 2014 Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L, Petrozza A, Snaith H 2013 Science 342 341

    [4]

    Chen C W, Hsiao S Y, Chen C Y, Kang H W, Huang Z Y, Lin H W 2015 Mater. Chem. 3 9152Google Scholar

    [5]

    Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q 2022 Sci. China Chem. 65 467

    [6]

    Wang B, Iocozzia J, Zhang M, Ye M, Yan S, Jin H, Wang S, Zou Z, Lin Z 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [7]

    Zhang M, Cui X, Wang Y, Wang B, Ye M, Wang W, Ma C, Lin Z. 2020 Nano Energy 71 104620Google Scholar

    [8]

    Zhang M, Ye M, Wang W, Ma C, Wang S, Liu Q, Lian T, Huang J, Lin Z 2020 Adv. Mater. 32 2000999Google Scholar

    [9]

    Cui X, Chen Y, Zhang M, Harn Y W, Qi J, Gao L, Wang Z L, Huang J, Yang Y, Lin Z 2020 Energy Environ. Sci. 13 1743Google Scholar

    [10]

    Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar

    [11]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan, Alarousu M E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    De Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar

    [15]

    Prochowicz D, Franckevičius M, Cieślak A M, Zakeeruddin S M, Grätzel M, Lewiński J 2015 Mater. Chem. A 3 20772Google Scholar

    [16]

    Zhang Y N, Cui R, Xiong L H, Pang D W 2018 Nanomedicine Nanotechnology, Biol. Med. 14 1813

    [17]

    Zhang Y, Zhang X, Xu X, Munyalo J M, Liu L, Liu X, Lu M, Zhao Y 2019 Mol. Liq. 280 360Google Scholar

    [18]

    Hanul M, Maengsuk K, Seung-Un L, Hyeonwoo K, Gwisu K. Keunsu C, Hee L 2019 Science 366 749Google Scholar

    [19]

    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S, Lee K, Lee S, Shin H, Cheong H, Park N 2020 ACS Energy Lett. 5 360Google Scholar

    [20]

    Heo J H, Im S H 2016 Nanoscale 8 2554Google Scholar

    [21]

    Chen Z, Türedi B, Alsalloum A, Yang C, Zheng X, Gereige I, AlSaggaf A, Mohammed O, Bakr O 2019 ACS Energy Lett. 4 1412Google Scholar

    [22]

    Yen H, Liang P, Chueh C, Yang Z, Wang H 2016 ACS Appl. Mater. Interfaces 8 14513Google Scholar

    [23]

    Cheng X, Yang S, Cao B, Tao X, Chen Z 2020 Adv. Funct. Mater. 30 1905021Google Scholar

    [24]

    Jiang X, Fu X, Ju D, Yang S, Chen Z, Tao X 2020 ACS Energy Lett. 5 1797Google Scholar

    [25]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [26]

    Kim J H, Williams S T, Cho N, Chueh C C, Jen A K Y 2015 Adv. Energy Mater. 5 1401229Google Scholar

    [27]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar

    [28]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N. Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [29]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [30]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [31]

    Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda M M, Wang C, Jiang C S, Al-Jassim M, Ellingson R J, Podraza N J, Zhu K, Yan Y 2019 Adv. Energy Mater. 9 1803135Google Scholar

    [32]

    Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 76102Google Scholar

    [33]

    Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y 2018 Nat. Commun. 9 743Google Scholar

  • 图 1  FAPbI3单晶、晶体粉末和有机卤化物盐钙钛矿作为前驱体制备的钙钛矿薄膜在湿度为40%的环境下放置1天(a), 3天(b) 和5天(c)的XRD图谱

    Figure 1.  Powder XRD patterns of FAPbI3 single crystals, crystal powders and organic halide salt perovskite as precursors prepared for perovskite thin films placed under 40% humidity for 1 day (a), 3 days (b) and 5 days (c).

    图 2  FAPbI3单晶(a)、晶体粉末(b)和有机卤化物盐(c)作为前驱体制备的钙钛矿薄膜的SEM图像

    Figure 2.  SEM images of FAPbI3 perovskite films prepared from single crystal (a), crystal powders (b) and organic halide salt (c).

    图 3  FAPbI3单晶、晶体粉末和有机卤化物盐钙钛矿作为前驱体制备的钙钛矿薄膜的稳态 PL光谱(a)和瞬态(TRPL)光谱(b); FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿薄膜的平均寿命统计(c); FTO/TiO2 ETL/钙钛矿/PCBM/Ag 结构的纯电子器空间电荷限制电流(SCLC)(d); FAPbI3单晶、晶体粉末和有机卤化物盐制备的器件的暗电流密度-电压(J-V)特性(e); FAPbI3单晶、晶体粉末和有机卤化物盐制备的器件的电化学阻抗谱(EIS)(f)

    Figure 3.  Steady-state PL spectra (a) and time-resolved PL (TRPL) spectra (b) of perovskite films prepared from FAPbI3 single crystal, crystal powders and organic halide salt; average lifetime statistics of perovskite films of FAPbI3 single crystal, crystal powders and organic halide salt (c); space charge limited current (SCLC) plots of electron-only devices with an architecture of FTO/TiO2 ETL/Perovskite/PCBM/Ag based on FAPbI3 single crystal, crystal powders and organic halide salt perovskite (d); dark current density-voltage (J-V) characteristics of FAPbI3 single crystal, crystal powders and organic halide salt devices (e); electrochemical impedance spectroscopy (EIS) of FAPbI3 single crystal, crystal powders and organic halide salt devices (f).

    图 4  (a) 钙钛矿太阳能电池结构示意图; (b) FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿太阳能电池的J-V曲线图; (c) FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿太阳能电池的I-V曲线图; (d) 在没有封装的环境条件下FAPbI3单晶、晶体粉末和有机卤化物盐制备器件的稳定性; (e) FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿太阳能电池PCE统计图; (f) FAPbI3单晶制备的钙钛矿太阳能电池稳态效率和电流密度

    Figure 4.  (a) Device structure of perovskite solar cells; (b) J-V curves of perovskite solar cells prepared by FAPbI3 single crystal, crystal powders and organic halide salt; (c) I-V curves of perovskite solar cells prepared by FAPbI3 single crystal, crystal powders and organic halide salt; (d) PCE stability test of the unencapsulated devices prepared by FAPbI3 single crystal, crystal powders and organic halide salt for 14 days in ambient environment; (e) photoelectric conversion efficiency statistics of perovskite solar cells prepared by FAPbI3 single crystal, crystal powders and organic halide salt; (f) steady-state efficiency and current density of perovskite solar cells prepared by FAPbI3 single crystal.

    表 1  FAPbI3单晶、晶体粉末和有机卤化物盐钙钛矿薄膜器件的瞬态(TRPL)光谱性能参数.

    Table 1.  Time-resolved PL (TRPL) performance parameters of FAPbI3 single crystal, crystal powders and organic halide salt perovskite thin film devices.

    A1τ1/nsA2τ2/nsΤave/ns
    有机卤化物盐0.143219.530.56983.71312.715
    晶体粉末0.152020.900.56524.4013.66
    单晶0.1823112.40.44116.687.19
    DownLoad: CSV
  • [1]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H 2014 Energy Environ. Sci. 7 982Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif 2014 Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L, Petrozza A, Snaith H 2013 Science 342 341

    [4]

    Chen C W, Hsiao S Y, Chen C Y, Kang H W, Huang Z Y, Lin H W 2015 Mater. Chem. 3 9152Google Scholar

    [5]

    Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q 2022 Sci. China Chem. 65 467

    [6]

    Wang B, Iocozzia J, Zhang M, Ye M, Yan S, Jin H, Wang S, Zou Z, Lin Z 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [7]

    Zhang M, Cui X, Wang Y, Wang B, Ye M, Wang W, Ma C, Lin Z. 2020 Nano Energy 71 104620Google Scholar

    [8]

    Zhang M, Ye M, Wang W, Ma C, Wang S, Liu Q, Lian T, Huang J, Lin Z 2020 Adv. Mater. 32 2000999Google Scholar

    [9]

    Cui X, Chen Y, Zhang M, Harn Y W, Qi J, Gao L, Wang Z L, Huang J, Yang Y, Lin Z 2020 Energy Environ. Sci. 13 1743Google Scholar

    [10]

    Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar

    [11]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan, Alarousu M E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    De Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar

    [15]

    Prochowicz D, Franckevičius M, Cieślak A M, Zakeeruddin S M, Grätzel M, Lewiński J 2015 Mater. Chem. A 3 20772Google Scholar

    [16]

    Zhang Y N, Cui R, Xiong L H, Pang D W 2018 Nanomedicine Nanotechnology, Biol. Med. 14 1813

    [17]

    Zhang Y, Zhang X, Xu X, Munyalo J M, Liu L, Liu X, Lu M, Zhao Y 2019 Mol. Liq. 280 360Google Scholar

    [18]

    Hanul M, Maengsuk K, Seung-Un L, Hyeonwoo K, Gwisu K. Keunsu C, Hee L 2019 Science 366 749Google Scholar

    [19]

    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S, Lee K, Lee S, Shin H, Cheong H, Park N 2020 ACS Energy Lett. 5 360Google Scholar

    [20]

    Heo J H, Im S H 2016 Nanoscale 8 2554Google Scholar

    [21]

    Chen Z, Türedi B, Alsalloum A, Yang C, Zheng X, Gereige I, AlSaggaf A, Mohammed O, Bakr O 2019 ACS Energy Lett. 4 1412Google Scholar

    [22]

    Yen H, Liang P, Chueh C, Yang Z, Wang H 2016 ACS Appl. Mater. Interfaces 8 14513Google Scholar

    [23]

    Cheng X, Yang S, Cao B, Tao X, Chen Z 2020 Adv. Funct. Mater. 30 1905021Google Scholar

    [24]

    Jiang X, Fu X, Ju D, Yang S, Chen Z, Tao X 2020 ACS Energy Lett. 5 1797Google Scholar

    [25]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [26]

    Kim J H, Williams S T, Cho N, Chueh C C, Jen A K Y 2015 Adv. Energy Mater. 5 1401229Google Scholar

    [27]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar

    [28]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N. Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [29]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [30]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [31]

    Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda M M, Wang C, Jiang C S, Al-Jassim M, Ellingson R J, Podraza N J, Zhu K, Yan Y 2019 Adv. Energy Mater. 9 1803135Google Scholar

    [32]

    Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 76102Google Scholar

    [33]

    Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y 2018 Nat. Commun. 9 743Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [3] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [5] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] Qi Qi, Chen Hai-Feng, Hong Zi-fan, Liu Ying-Ying, Guo Li-Xin, Li Li-Jun, Lu Qin, Jia Yi-Fan. Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst. Acta Physica Sinica, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [12] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [15] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei. Effect of solvent on the perovskite thin film morphology and crystallinity. Acta Physica Sinica, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
Metrics
  • Abstract views:  9539
  • PDF Downloads:  336
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2022
  • Accepted Date:  07 September 2022
  • Available Online:  12 October 2022
  • Published Online:  05 January 2023

/

返回文章
返回