-
Recently, the power conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells has been enhanced rapidly from 3.8% to 25.8%, which is a top research topic in the field of photovoltaic power generation. However, the preparation of the hybrid perovskite solar cells has high environmental requirements, and the absorber layer is easily caused by the environmental influence and decomposition, resulting in the degradation of device performance. The all-inorganic CsPbBr3 perovskite material has good stability, can be prepared directly in air, and is more economical, showing great potential applications. However, the PCE of all-inorganic CsPbBr3 perovskite solar cells is not high, and at this stage, there is still much room for exploring high-quality controllable preparation of CsPbBr3 films. In this paper, we aim to prepare efficient and stable CsPbBr3 perovskite solar cells with additive engineering. Polymer is one of the most effective additives in perovskite solar cells. The use of polymer additive in perovskite layer can improve the shape-form, structure, and band gap of the film, thus improving the quality of perovskite film. Polyvinylidene fluoride (PVDF) is a cheap polymer with hydrophobic F ions and long flexible polymer chains, and can be used to prepare efficient and stable perovskite solar cells. In this paper, CsPbBr3 perovskite films are prepared by multi-part spin-coating method. PVDF with enriched hydrophobic F is added into the PbBr2 precursor solution as an additive to adjust the crystalline quality of the perovskite film, and the effects of PVDF on the growth process and device performance of the perovskite film are systematically studied. The results show that the PVDF can be used as a template to promote the growth of perovskite crystals, improve the crystal structure and film shape, thus reducing the defect density and charge recombination, and increasing the PCE of the device to 8.17%. The original efficiency of more than 90% can be maintained after 1400 h of storage under unencapsulated condition. Finally, high-efficiency, stable and low-cost CsPbBr3 perovskite solar cells are obtained, which is important in further expanding the optimized design ideas of CsPbBr3 perovskite solar cells. The PVDF can form hydrogen bonds with perovskite or interact with lead ions to improve the structural stability of perovskite, and the F ions in PVDF can improve the moisture stability of perovskite layers. -
Keywords:
- CsPbBr3 /
- polyvinylidene fluoride /
- addictive /
- perovskite solar cells
[1] Wang D, Li W J, Du Z B, Li G D, Sun W H, Wu J H, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar
[2] Liu G C, Liu Z H, Wang L, Xie X Y 2021 Chem. Phys. 542 111061Google Scholar
[3] Jin I S, Park S H, Kim K S, Jung J W 2020 J. Alloys Compd. 847 156512Google Scholar
[4] Wan X J, Yu Z, Tian W M, Huang F Z, Jin S Y, Yang X C, Cheng Y B, Hagfeldt A, Sun L C 2020 J. Energy Chem. 46 8Google Scholar
[5] Fu Y J, Sun Y P, Tang H, Wang L Y, Yu H Z, Cao D R 2021 Dye. Pigment. 191 109339Google Scholar
[6] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[7] Huo X N, Wang K X, Yin R, Sun W W, Sun Y S, Gao Y K, You T T, Yin P G 2022 Sol. Energy Mater. Sol. Cells 247 111963Google Scholar
[8] Zhu J W, He B L, Gong Z K, Ding Y, Zhang W Y, Li X K, Zong Z H, Chen H Y, Tang Q W 2020 ChemSusChem 13 1834Google Scholar
[9] Ma J J, Li Y H, Li J, Qin M C, Wu X, Lv Z Y, Hsu Y J, Lu X H, Wu Y C, Fang G J 2020 Nano Energy 75 104933Google Scholar
[10] Yu J X, Liu G X, Chen C M, Li Y, Xu M R, Wang T L, Zhao G, Zhang L 2020 J. Mater. Chem. C 8 6326Google Scholar
[11] Liu X Y, Liu Z Y, Tan X H, Ye H B, Sun B, Xi S, Shi T L, Tang Z R, Liao G L 2019 J. Power Sources 439 227092Google Scholar
[12] Su G D, He B L, Gong Z K, Ding Y, Duan J L, Zhao Y Y, Chen H Y, Tang Q W 2019 Electrochim. Acta 328 135102Google Scholar
[13] Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chemie Int. Ed. 130 3787Google Scholar
[14] Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W 2018 Adv. Energy Mater. 8 1802346
[15] Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 4395Google Scholar
[16] Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Sciences 369 96Google Scholar
[17] Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Grätzel M 2020 Adv. Mater. 32 1907757Google Scholar
[18] Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y 2020 Adv. Mater. 32 1907769Google Scholar
[19] Zheng H Y, Xu X X, Xu S D, Liu G Z, Chen S H, Zhang X X, Chen T W, Pan X 2019 J. Mater. Chem. C 7 4441Google Scholar
[20] Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J 2017 J. Mater. Chem. A 5 5486Google Scholar
[21] Chen C, Wang X, Li Z P, Du X F, Shao Z P, Sun X H, Liu D C, Gao C Y, Hao L Z, Zhao Q Q, Zhang B Q, Cui G L, Pang S P 2022 Angew. Chemie Int. Ed. 61 e202113932Google Scholar
[22] Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F 2015 ACS Appl. Mater. Interfaces 7 4955Google Scholar
[23] Qi Y, Qu J, Moore J, Gollinger K, Shrestha N, Zhao Y, Pradhan N, Tang J, Dai Q 2022 Org. Electron. 104 106487Google Scholar
[24] Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 317Google Scholar
[25] Santhosh N, Daniel R I, Acchutharaman K R, Pandian M S, Ramasamy P 2022 Mater. Today Commun. 31 103446Google Scholar
[26] Zheng H Y, Liu G Z, Wu W W, Xu H F, Pan X 2021 J. Energy Chem. 57 593Google Scholar
[27] Cao X B, Zhang G S, Jiang L, Cai Y F, Wang Y, He X, Zeng Q G, Chen J Z, Jia Y, Wei J Q 2021 Green Chem. 23 2104Google Scholar
[28] Gao B, Meng J 2020 Sol. Energy 211 1223Google Scholar
[29] Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P 2017 Chem. Mater. 29 3490Google Scholar
[30] Zhang Y, Zhuang X H, Zhou K, Cai C, Hu Z Y, Zhang J, Zhu Y J 2017 J. Mater. Chem. C 5 9037Google Scholar
[31] Chu Z D, Yang M J, Schulz P, Wu D, Ma X, Seifert E, Sun L Y, Li X Q, Zhu K, Lai K J 2017 Nat. Commun. 8 2230Google Scholar
[32] Lau C F J, Deng X F, Zheng J H, Kim J C, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar
[33] Luo J S, Jia C Y, Wan Z Q, Han F, Zhao B W, Wang R L 2017 J. Power Sources 342 886Google Scholar
[34] Liu Z, Shi T, Tang Z, Sun B, Liao G 2016 Nanoscale 8 7017Google Scholar
[35] Chen H, Liu T, Zhou P, Li S, Ren J, He H C, Wang J S, Wang N, Guo S J 2020 Adv. Mater. 32 1905661Google Scholar
[36] Zhang P, Cao F R, Tian W, Li L 2022 Sci. China Mater. 65 321Google Scholar
-
表 1 PVDF不同添加量所制备的CsPbBr3 PSCs的光伏参数
Table 1. Photovoltaic parameters of CsPbBr3 PSCs prepared with different amounts of PVDF.
器件薄膜类型 开路电压
VOC/V短路电流
Jsc/(mA·cm–2)光电转换效
率PCE/%填充因子
FF/%Control 1.34 6.77 6.81 75 0.3 mg PVDF 1.36 7.03 7.12 74 0.5 mg PVDF 1.31 8.26 8.17 76 1.0 mg PVDF 1.33 7.39 7.40 75 -
[1] Wang D, Li W J, Du Z B, Li G D, Sun W H, Wu J H, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar
[2] Liu G C, Liu Z H, Wang L, Xie X Y 2021 Chem. Phys. 542 111061Google Scholar
[3] Jin I S, Park S H, Kim K S, Jung J W 2020 J. Alloys Compd. 847 156512Google Scholar
[4] Wan X J, Yu Z, Tian W M, Huang F Z, Jin S Y, Yang X C, Cheng Y B, Hagfeldt A, Sun L C 2020 J. Energy Chem. 46 8Google Scholar
[5] Fu Y J, Sun Y P, Tang H, Wang L Y, Yu H Z, Cao D R 2021 Dye. Pigment. 191 109339Google Scholar
[6] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[7] Huo X N, Wang K X, Yin R, Sun W W, Sun Y S, Gao Y K, You T T, Yin P G 2022 Sol. Energy Mater. Sol. Cells 247 111963Google Scholar
[8] Zhu J W, He B L, Gong Z K, Ding Y, Zhang W Y, Li X K, Zong Z H, Chen H Y, Tang Q W 2020 ChemSusChem 13 1834Google Scholar
[9] Ma J J, Li Y H, Li J, Qin M C, Wu X, Lv Z Y, Hsu Y J, Lu X H, Wu Y C, Fang G J 2020 Nano Energy 75 104933Google Scholar
[10] Yu J X, Liu G X, Chen C M, Li Y, Xu M R, Wang T L, Zhao G, Zhang L 2020 J. Mater. Chem. C 8 6326Google Scholar
[11] Liu X Y, Liu Z Y, Tan X H, Ye H B, Sun B, Xi S, Shi T L, Tang Z R, Liao G L 2019 J. Power Sources 439 227092Google Scholar
[12] Su G D, He B L, Gong Z K, Ding Y, Duan J L, Zhao Y Y, Chen H Y, Tang Q W 2019 Electrochim. Acta 328 135102Google Scholar
[13] Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chemie Int. Ed. 130 3787Google Scholar
[14] Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W 2018 Adv. Energy Mater. 8 1802346
[15] Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 4395Google Scholar
[16] Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Sciences 369 96Google Scholar
[17] Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Grätzel M 2020 Adv. Mater. 32 1907757Google Scholar
[18] Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y 2020 Adv. Mater. 32 1907769Google Scholar
[19] Zheng H Y, Xu X X, Xu S D, Liu G Z, Chen S H, Zhang X X, Chen T W, Pan X 2019 J. Mater. Chem. C 7 4441Google Scholar
[20] Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J 2017 J. Mater. Chem. A 5 5486Google Scholar
[21] Chen C, Wang X, Li Z P, Du X F, Shao Z P, Sun X H, Liu D C, Gao C Y, Hao L Z, Zhao Q Q, Zhang B Q, Cui G L, Pang S P 2022 Angew. Chemie Int. Ed. 61 e202113932Google Scholar
[22] Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F 2015 ACS Appl. Mater. Interfaces 7 4955Google Scholar
[23] Qi Y, Qu J, Moore J, Gollinger K, Shrestha N, Zhao Y, Pradhan N, Tang J, Dai Q 2022 Org. Electron. 104 106487Google Scholar
[24] Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 317Google Scholar
[25] Santhosh N, Daniel R I, Acchutharaman K R, Pandian M S, Ramasamy P 2022 Mater. Today Commun. 31 103446Google Scholar
[26] Zheng H Y, Liu G Z, Wu W W, Xu H F, Pan X 2021 J. Energy Chem. 57 593Google Scholar
[27] Cao X B, Zhang G S, Jiang L, Cai Y F, Wang Y, He X, Zeng Q G, Chen J Z, Jia Y, Wei J Q 2021 Green Chem. 23 2104Google Scholar
[28] Gao B, Meng J 2020 Sol. Energy 211 1223Google Scholar
[29] Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P 2017 Chem. Mater. 29 3490Google Scholar
[30] Zhang Y, Zhuang X H, Zhou K, Cai C, Hu Z Y, Zhang J, Zhu Y J 2017 J. Mater. Chem. C 5 9037Google Scholar
[31] Chu Z D, Yang M J, Schulz P, Wu D, Ma X, Seifert E, Sun L Y, Li X Q, Zhu K, Lai K J 2017 Nat. Commun. 8 2230Google Scholar
[32] Lau C F J, Deng X F, Zheng J H, Kim J C, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar
[33] Luo J S, Jia C Y, Wan Z Q, Han F, Zhao B W, Wang R L 2017 J. Power Sources 342 886Google Scholar
[34] Liu Z, Shi T, Tang Z, Sun B, Liao G 2016 Nanoscale 8 7017Google Scholar
[35] Chen H, Liu T, Zhou P, Li S, Ren J, He H C, Wang J S, Wang N, Guo S J 2020 Adv. Mater. 32 1905661Google Scholar
[36] Zhang P, Cao F R, Tian W, Li L 2022 Sci. China Mater. 65 321Google Scholar
Catalog
Metrics
- Abstract views: 4024
- PDF Downloads: 134
- Cited By: 0