-
Graphene has been a superstar in the fields ranging from materials science to condensed-matter physics since 2004. Graphene possesses good thermal and mechanical properties, high electron transfer capability and relatively low production cost. As a consequence, graphene has been used in the areas of multi-functional advanced materials and electronics. A direct disperse method has been widely applied to polymers to improve their dielectric properties. Recently, graphene/polymer composites have received much attention. Graphene nanosheets can significantly improve the physical properties of the host polymer at a very low content of conductive filler loading. Poly vinylidene fluoride (PVDF) is a semicrystalline thermoplastic polymer with remarkably high piezo-/pyroelectric coefficient, and excellent thermal stability and chemical resistance. More efforts have been recently devoted to the preparations of high-' composites based on PVDF. In this work, a graphene/PVA/PVDF nanocomposite film composed of poly(vinyl alcohol) (PVA), reduced graphene oxide (RGO), and poly (vinylidene fluoride) (PVDF) is fabricated. First of all, graphene oxide (GO) is prepared by the modified Hummers method. GO and PVA are successively dissolved in the dimethyl sulfoxide (DMSO) solution, in order to obtain PVA functionalized GO which is formed via non-covalent bonds. Then PVDF is added into this solution to form a homogeneous three-phase aqueous mixture. According to the solution-casting and thermal reduction processes, the three-phase nanocomposite films are formed. The thickness values of the films are in a range of 0.3-0.4 mm. The square specimens are coated with a silver paste prior to electrical measurements. The obtained products are characterized using X-ray diffraction, UV Vis absorption spectrum, Fourier transform infrared absorption spectrum, and atomic force microscopy. The morphologies of PVDF and RGO/PVA/PVDF films are investigated by a scanning electron microscope. Electrical measurements are conducted in a frequency range from 102 to 104 Hz. Results suggest that GO can be reduced to RGO and phase transition of PVDF from to phases is effectively promoted at 120 ℃. The dielectric properties of the polymer matrix are improved. Furthermore, PVA modified RGO is easier to disperse in the PVDF substrate than the original one, which strongly reduces the spherulite size of PVDF and improves the dielectric property of the composite film. The percolation threshold (fvol*) of RGO/PVA/PVDF film is estimated to be 8.45 vol.%, and the dielectric constant of the film is 238 times as large as that of the pure PVDF films at 102 Hz. In addition, the dielectric constant increases rapidly near the percolation threshold and depends on frequency, which is mainly ascribed to the Maxwell-Wagner-Sillars polarization in the low frequency range. This study provides a low-cost and simple method of preparing polymer nanocomposites with high dielectric properties.
[1] Zhang T, Xue Q Z, Zhang S, Dong M D 2012 Nano Today 7 180
[2] Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S, Leeuw D M D 2005 Nat. Mater. 4 243
[3] Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C 2010 Phys. Status Solidi A 207 1870
[4] Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776 (in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 物理学报 51 776]
[5] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Cuo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575
[6] Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548
[7] Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625
[8] Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852
[9] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379
[10] Zhang H J, Shen P 2013 Physics 42 456(in Chinese) [张海婧, 沈平2013 物理42 456]
[11] Yang S D, Chen L 2015 Chin. Phys. B 24 118104
[12] Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M 2004 Carbon 42 2929
[13] Zhang G, Huang S Y 2013 Physics42 100 (in Chinese)[张刚, 黄少云2013 物理42 100]
[14] Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103
[15] Chae H K, Siberio-Prez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M 2004 Nature 427 523
[16] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D 2004 J. Phys. Chem. B 108 19912
[17] Ansari S, Giannelis E P 2009 J. Polym. Sci. Pol. Phys. 47 888
[18] Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273
[19] Chu L Y, Xue Q Z, Sun J, Xia F J, Xing W, Xia D, Dong M D 2013 Compos. Sci. Technol. 86 70
[20] Cho S H, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668
[21] Tang H X, Ehlert G J, Lin Y R, Sodano H A 2012 Nano Lett. 12 84
[22] Liu H Y, Zheng Y L, Peng S G, Liu J C, Zhang Y Q 2014 New Chem. Mater. 42 1 (in Chinese) [刘红宇, 郑英丽, 彭淑鸽, 刘继纯, 张玉清2014 化工新型材料42 1]
[23] Daniela C M, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M 2010 ACS Nano 4 4806
[24] Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D J 2010 Macromolecules 43 9411
[25] Li D, Muller B M, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101
[26] Salimi A, Youseli A A 2003 Polym. Test. 22 699
[27] Gregorio R, J R, Uneo E M 1999 J. Mater. Sci. 34 4489
[28] Li J C, Wang C L, Zhong W L 2003 Acta Phys. -Chim. Sin. 19 1010 (in Chinese) [李吉超, 王春雷, 钟维烈 2003 物理化学学报 19 1010]
[29] He F, Lau S T, Chan H L, Fan J T 2009 Adv. Mater. 21 710
[30] Nan C W 1993 Prog. Mater. Sci. 37 1
[31] Li Y J, Xu M, Feng J Q, Dang Z M 2006 Appl. Phys. Lett. 89 072902
-
[1] Zhang T, Xue Q Z, Zhang S, Dong M D 2012 Nano Today 7 180
[2] Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S, Leeuw D M D 2005 Nat. Mater. 4 243
[3] Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C 2010 Phys. Status Solidi A 207 1870
[4] Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776 (in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 物理学报 51 776]
[5] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Cuo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575
[6] Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548
[7] Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625
[8] Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852
[9] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379
[10] Zhang H J, Shen P 2013 Physics 42 456(in Chinese) [张海婧, 沈平2013 物理42 456]
[11] Yang S D, Chen L 2015 Chin. Phys. B 24 118104
[12] Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M 2004 Carbon 42 2929
[13] Zhang G, Huang S Y 2013 Physics42 100 (in Chinese)[张刚, 黄少云2013 物理42 100]
[14] Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103
[15] Chae H K, Siberio-Prez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M 2004 Nature 427 523
[16] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D 2004 J. Phys. Chem. B 108 19912
[17] Ansari S, Giannelis E P 2009 J. Polym. Sci. Pol. Phys. 47 888
[18] Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273
[19] Chu L Y, Xue Q Z, Sun J, Xia F J, Xing W, Xia D, Dong M D 2013 Compos. Sci. Technol. 86 70
[20] Cho S H, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668
[21] Tang H X, Ehlert G J, Lin Y R, Sodano H A 2012 Nano Lett. 12 84
[22] Liu H Y, Zheng Y L, Peng S G, Liu J C, Zhang Y Q 2014 New Chem. Mater. 42 1 (in Chinese) [刘红宇, 郑英丽, 彭淑鸽, 刘继纯, 张玉清2014 化工新型材料42 1]
[23] Daniela C M, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M 2010 ACS Nano 4 4806
[24] Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D J 2010 Macromolecules 43 9411
[25] Li D, Muller B M, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101
[26] Salimi A, Youseli A A 2003 Polym. Test. 22 699
[27] Gregorio R, J R, Uneo E M 1999 J. Mater. Sci. 34 4489
[28] Li J C, Wang C L, Zhong W L 2003 Acta Phys. -Chim. Sin. 19 1010 (in Chinese) [李吉超, 王春雷, 钟维烈 2003 物理化学学报 19 1010]
[29] He F, Lau S T, Chan H L, Fan J T 2009 Adv. Mater. 21 710
[30] Nan C W 1993 Prog. Mater. Sci. 37 1
[31] Li Y J, Xu M, Feng J Q, Dang Z M 2006 Appl. Phys. Lett. 89 072902
Catalog
Metrics
- Abstract views: 7756
- PDF Downloads: 387
- Cited By: 0