Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films

Feng Qi Li Meng-Kai Tang Hai-Tong Wang Xiao-Dong Gao Zhong-Min Meng Fan-Ling

Citation:

Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films

Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene has been a superstar in the fields ranging from materials science to condensed-matter physics since 2004. Graphene possesses good thermal and mechanical properties, high electron transfer capability and relatively low production cost. As a consequence, graphene has been used in the areas of multi-functional advanced materials and electronics. A direct disperse method has been widely applied to polymers to improve their dielectric properties. Recently, graphene/polymer composites have received much attention. Graphene nanosheets can significantly improve the physical properties of the host polymer at a very low content of conductive filler loading. Poly vinylidene fluoride (PVDF) is a semicrystalline thermoplastic polymer with remarkably high piezo-/pyroelectric coefficient, and excellent thermal stability and chemical resistance. More efforts have been recently devoted to the preparations of high-' composites based on PVDF. In this work, a graphene/PVA/PVDF nanocomposite film composed of poly(vinyl alcohol) (PVA), reduced graphene oxide (RGO), and poly (vinylidene fluoride) (PVDF) is fabricated. First of all, graphene oxide (GO) is prepared by the modified Hummers method. GO and PVA are successively dissolved in the dimethyl sulfoxide (DMSO) solution, in order to obtain PVA functionalized GO which is formed via non-covalent bonds. Then PVDF is added into this solution to form a homogeneous three-phase aqueous mixture. According to the solution-casting and thermal reduction processes, the three-phase nanocomposite films are formed. The thickness values of the films are in a range of 0.3-0.4 mm. The square specimens are coated with a silver paste prior to electrical measurements. The obtained products are characterized using X-ray diffraction, UV Vis absorption spectrum, Fourier transform infrared absorption spectrum, and atomic force microscopy. The morphologies of PVDF and RGO/PVA/PVDF films are investigated by a scanning electron microscope. Electrical measurements are conducted in a frequency range from 102 to 104 Hz. Results suggest that GO can be reduced to RGO and phase transition of PVDF from to phases is effectively promoted at 120 ℃. The dielectric properties of the polymer matrix are improved. Furthermore, PVA modified RGO is easier to disperse in the PVDF substrate than the original one, which strongly reduces the spherulite size of PVDF and improves the dielectric property of the composite film. The percolation threshold (fvol*) of RGO/PVA/PVDF film is estimated to be 8.45 vol.%, and the dielectric constant of the film is 238 times as large as that of the pure PVDF films at 102 Hz. In addition, the dielectric constant increases rapidly near the percolation threshold and depends on frequency, which is mainly ascribed to the Maxwell-Wagner-Sillars polarization in the low frequency range. This study provides a low-cost and simple method of preparing polymer nanocomposites with high dielectric properties.
      Corresponding author: Meng Fan-Ling, mfl@jlu.edu.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2012YQ24026407).
    [1]

    Zhang T, Xue Q Z, Zhang S, Dong M D 2012 Nano Today 7 180

    [2]

    Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S, Leeuw D M D 2005 Nat. Mater. 4 243

    [3]

    Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C 2010 Phys. Status Solidi A 207 1870

    [4]

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776 (in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 物理学报 51 776]

    [5]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Cuo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575

    [6]

    Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548

    [7]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625

    [8]

    Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852

    [9]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [10]

    Zhang H J, Shen P 2013 Physics 42 456(in Chinese) [张海婧, 沈平2013 物理42 456]

    [11]

    Yang S D, Chen L 2015 Chin. Phys. B 24 118104

    [12]

    Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M 2004 Carbon 42 2929

    [13]

    Zhang G, Huang S Y 2013 Physics42 100 (in Chinese)[张刚, 黄少云2013 物理42 100]

    [14]

    Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103

    [15]

    Chae H K, Siberio-Prez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M 2004 Nature 427 523

    [16]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D 2004 J. Phys. Chem. B 108 19912

    [17]

    Ansari S, Giannelis E P 2009 J. Polym. Sci. Pol. Phys. 47 888

    [18]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273

    [19]

    Chu L Y, Xue Q Z, Sun J, Xia F J, Xing W, Xia D, Dong M D 2013 Compos. Sci. Technol. 86 70

    [20]

    Cho S H, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668

    [21]

    Tang H X, Ehlert G J, Lin Y R, Sodano H A 2012 Nano Lett. 12 84

    [22]

    Liu H Y, Zheng Y L, Peng S G, Liu J C, Zhang Y Q 2014 New Chem. Mater. 42 1 (in Chinese) [刘红宇, 郑英丽, 彭淑鸽, 刘继纯, 张玉清2014 化工新型材料42 1]

    [23]

    Daniela C M, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M 2010 ACS Nano 4 4806

    [24]

    Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D J 2010 Macromolecules 43 9411

    [25]

    Li D, Muller B M, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101

    [26]

    Salimi A, Youseli A A 2003 Polym. Test. 22 699

    [27]

    Gregorio R, J R, Uneo E M 1999 J. Mater. Sci. 34 4489

    [28]

    Li J C, Wang C L, Zhong W L 2003 Acta Phys. -Chim. Sin. 19 1010 (in Chinese) [李吉超, 王春雷, 钟维烈 2003 物理化学学报 19 1010]

    [29]

    He F, Lau S T, Chan H L, Fan J T 2009 Adv. Mater. 21 710

    [30]

    Nan C W 1993 Prog. Mater. Sci. 37 1

    [31]

    Li Y J, Xu M, Feng J Q, Dang Z M 2006 Appl. Phys. Lett. 89 072902

  • [1]

    Zhang T, Xue Q Z, Zhang S, Dong M D 2012 Nano Today 7 180

    [2]

    Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S, Leeuw D M D 2005 Nat. Mater. 4 243

    [3]

    Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C 2010 Phys. Status Solidi A 207 1870

    [4]

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776 (in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 物理学报 51 776]

    [5]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Cuo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575

    [6]

    Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548

    [7]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625

    [8]

    Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852

    [9]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [10]

    Zhang H J, Shen P 2013 Physics 42 456(in Chinese) [张海婧, 沈平2013 物理42 456]

    [11]

    Yang S D, Chen L 2015 Chin. Phys. B 24 118104

    [12]

    Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M 2004 Carbon 42 2929

    [13]

    Zhang G, Huang S Y 2013 Physics42 100 (in Chinese)[张刚, 黄少云2013 物理42 100]

    [14]

    Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103

    [15]

    Chae H K, Siberio-Prez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M 2004 Nature 427 523

    [16]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D 2004 J. Phys. Chem. B 108 19912

    [17]

    Ansari S, Giannelis E P 2009 J. Polym. Sci. Pol. Phys. 47 888

    [18]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273

    [19]

    Chu L Y, Xue Q Z, Sun J, Xia F J, Xing W, Xia D, Dong M D 2013 Compos. Sci. Technol. 86 70

    [20]

    Cho S H, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668

    [21]

    Tang H X, Ehlert G J, Lin Y R, Sodano H A 2012 Nano Lett. 12 84

    [22]

    Liu H Y, Zheng Y L, Peng S G, Liu J C, Zhang Y Q 2014 New Chem. Mater. 42 1 (in Chinese) [刘红宇, 郑英丽, 彭淑鸽, 刘继纯, 张玉清2014 化工新型材料42 1]

    [23]

    Daniela C M, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M 2010 ACS Nano 4 4806

    [24]

    Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D J 2010 Macromolecules 43 9411

    [25]

    Li D, Muller B M, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101

    [26]

    Salimi A, Youseli A A 2003 Polym. Test. 22 699

    [27]

    Gregorio R, J R, Uneo E M 1999 J. Mater. Sci. 34 4489

    [28]

    Li J C, Wang C L, Zhong W L 2003 Acta Phys. -Chim. Sin. 19 1010 (in Chinese) [李吉超, 王春雷, 钟维烈 2003 物理化学学报 19 1010]

    [29]

    He F, Lau S T, Chan H L, Fan J T 2009 Adv. Mater. 21 710

    [30]

    Nan C W 1993 Prog. Mater. Sci. 37 1

    [31]

    Li Y J, Xu M, Feng J Q, Dang Z M 2006 Appl. Phys. Lett. 89 072902

  • [1] Yin Kai, Guo Qi-Yang, Zhang Tian-Yin, Li Jing, Chen Xiang-Rong. Improving insulation properties of epoxy filled with surface fluorinated polystyrene nanospheres. Acta Physica Sinica, 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [2] Ren Jun-Wen, Jiang Guo-Qing, Chen Zhi-Jie, Wei Hua-Chao, Zhao Li-Hua, Jia Shen-Li. Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric. Acta Physica Sinica, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng. Optimization strategies for energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [5] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [6] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [7] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [8] Zhang Yuan, Chen Chen, Li Mei-Ya, Luoshan Mengdai. Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO2@Au nanostructure. Acta Physica Sinica, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [9] Shen Zhong-Hui, Jiang Yan-Da, Li Bao-Wen, Zhang Xin. Reseach progress of ferroelectric polymer nanocomposites with high energy storage density. Acta Physica Sinica, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [10] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [11] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [12] Ma Guo-Liang, Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Hou Chun-Feng. Tensile deformation mechanism of PE/CNTs irradiated by electrons. Acta Physica Sinica, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [13] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [14] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [15] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [16] Shan Dan, Zhu Jun-Chuan, Jin Can, Chen Xiao-Bing. Effect of B-site equal-valent doping on ferroelectric properties of SrBi4Ti4O15 ceramics. Acta Physica Sinica, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [17] Huang Ji-Quan, Hong Lan-Xiu, Han Gao-Rong, Weng Wen-Jian, Du Pi-Yi. Dielectric properties of a three-phase Fe-Ni-BaTiO3 composite. Acta Physica Sinica, 2006, 55(7): 3664-3669. doi: 10.7498/aps.55.3664
    [18] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [19] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [20] JI QI-GEN, DU YOU-WEI. THE ROLE OF GRAIN BOUNDARY IN THE Nd2Fe14B/α-Fe EXCHANGE COUPLING MAGNET. Acta Physica Sinica, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
Metrics
  • Abstract views:  7756
  • PDF Downloads:  387
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2016
  • Accepted Date:  12 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回