- 
				Electrostatic capacitors based on dielectrics delivering an ultrahigh power density, low loss and high operating voltage, are widely used in energy storage devices for modern electronic and electrical systems. Dielectric polymers, especially ferroelectric polymers, are preferable for an energy storage medium in film capacitors due to their superiority in ultrahigh breakdown strength, low mass density, flexibility, and easy fabrication process. Ferroelectric polymer nanocomposites combining the advantageous properties of ferroelectric polymer matrix and high dielectric constant of ceramic fillers, show great potential applications in achieving superior energy storage performances and have aroused substantial academic interest. This review focuses on the recent research progress of high-energy-density ferroelectric polymer nanocomposites. First, the synthesis and properties of PVDF-based ferroelectric polymers are introduced. Second, the effects of nanofillers, composite structures and interfaces on the dielectric and energy storage properties of ferroelectric polymer nanocomposites are summarized. Third, the underline mechanism of dielectric and energy storage behaviors in ferroelectric nanocomposites are discussed in the aspect of phase-field simulation. Last, the existing challenges and future directions of ferroelectric polymer nanocomposites with high energy storage density are summarized and prospected.- 
										Keywords:
										
- ferroelectric polymer /
- nanocomposite /
- energy storage density /
- dielectric material
 [1] Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576  Google Scholar Google Scholar[2] Prateek, Thakur V K, Gupta R K 2016 Chem. Rev. 116 4260  Google Scholar Google Scholar[3] 成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469  Google Scholar Google ScholarChen S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469  Google Scholar Google Scholar[4] Barshaw E J, White J, Chait M J, Cornette J B, Rabuffi M 2007 IEEE Trans. Magn. 43 223  Google Scholar Google Scholar[5] Chen Q, Shen Y, Zhang S, Zhang Q M 2015 Annu. Rev. Mater. Res. 45 433  Google Scholar Google Scholar[6] Laihonen S J, Gafvert U, Schutte T, Gedde U 2007 IEEE Trans. Dielectr. Electr. Insul. 14 275  Google Scholar Google Scholar[7] Rabuffi M, Picci G 2002 IEEE Trans. Plasma Sci. 30 1939  Google Scholar Google Scholar[8] Kawa H 1969 Jpn. J. Appl. Phys. 8 975  Google Scholar Google Scholar[9] Lovinger A J 1983 Science 220 1115  Google Scholar Google Scholar[10] Martins P, Lopes A C, Lanceros-Mendez S 2014 Prog. Polym. Sci. 39 683  Google Scholar Google Scholar[11] Zhu L, Wang Q 2012 Macromolecules 45 2937  Google Scholar Google Scholar[12] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749  Google Scholar Google Scholar[13] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103  Google Scholar Google Scholar[14] Li Z, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79  Google Scholar Google Scholar[15] Forsythe J S, Hill D 2000 Prog. Polym. Sci. 25 101  Google Scholar Google Scholar[16] Chu B, Zhou X, Neese B, Zhang Q M, Bauer F 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1162  Google Scholar Google Scholar[17] Xu H, Cheng Z Y, Olson D, Mai T, Zhang Q M, Kavarnos G 2001 Appl. Phys. Lett. 78 2360  Google Scholar Google Scholar[18] Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334  Google Scholar Google Scholar[19] Zhou X, Chu B, Neese B, Lin M, Zhang Q 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1133  Google Scholar Google Scholar[20] Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S H, Zhang Q M 2009 Appl. Phys. Lett. 94 162901  Google Scholar Google Scholar[21] Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L 2011 Adv. Funct. Mater. 21 3176  Google Scholar Google Scholar[22] Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L 2011 Macromolecules 44 2190  Google Scholar Google Scholar[23] Terzic I, Meereboer N L, Acuautla M, Portale G, Loos K 2019 Nat. Commun. 10 601  Google Scholar Google Scholar[24] Li J, Tan S, Ding S, Li H, Yang L, Zhang Z 2012 J. Mater. Chem. 22 23468  Google Scholar Google Scholar[25] Bornand V, Vacher C, Collet A, Papet P 2009 Mater. Chem. Phys. 117 169  Google Scholar Google Scholar[26] Kim E J, Kim K A, Yoon S M 2016 J. Phys. D: Appl. Phys. 49 075105  Google Scholar Google Scholar[27] Okabe Y, Murakami H, Osaka N, Saito H, Inoue T 2010 Polymer 51 1494  Google Scholar Google Scholar[28] Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A 2019 Polym. Test. 73 222  Google Scholar Google Scholar[29] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236  Google Scholar Google Scholar[30] Meng N, Ren X, Santagiuliana G, Ventura L, Bilotti E 2019 Nat. Commun. 10 4535  Google Scholar Google Scholar[31] Yu K, Niu Y, Zhou Y, Bai Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519  Google Scholar Google Scholar[32] Hao Y, Wang X, Bi K, Zhang J, Li L 2017 Nano Energy 31 49  Google Scholar Google Scholar[33] Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992  Google Scholar Google Scholar[34] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622  Google Scholar Google Scholar[35] Huang X, Sun B, Zhu Y, Li S, Jiang P 2019 Prog. Mater. Sci. 100 187  Google Scholar Google Scholar[36] Zhang H, Marwat M A, Xie B, Ashtar M, Ye Z G 2019 ACS Appl. Mater. Interfaces 12 1  Google Scholar Google Scholar[37] Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469  Google Scholar Google Scholar[38] Wang G, Huang X, Jiang P 2015 ACS Appl. Mater. Interfaces 7 18017  Google Scholar Google Scholar[39] Zhang X, Jiang J Y, Shen Z H, Dan Z K, Shen Y 2018 Adv. Mater. 30 1707269  Google Scholar Google Scholar[40] Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875  Google Scholar Google Scholar[41] Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227  Google Scholar Google Scholar[42] Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112  Google Scholar Google Scholar[43] Jiang J Y, Shen Z H, Cai X K, Qian Z K, Dan Z K, Lin Y H, Liu B L, Nan C W, C, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411  Google Scholar Google Scholar[44] Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204  Google Scholar Google Scholar[45] Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. 7 2965  Google Scholar Google Scholar[46] Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658  Google Scholar Google Scholar[47] Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292  Google Scholar Google Scholar[48] Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220  Google Scholar Google Scholar[49] Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202  Google Scholar Google Scholar[50] Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669  Google Scholar Google Scholar[51] Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q, He J L 2019 Adv. Mater. 31 e1807722  Google Scholar Google Scholar[52] Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934  Google Scholar Google Scholar[53] Zhang X, Li B-W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096  Google Scholar Google Scholar[54] Pourrahimi A M, Olsson R T, Hedenqvist M S 2018 Adv. Mater. 30 1703624  Google Scholar Google Scholar[55] Huang X Y, Jiang P K 2015 Adv. Mater. 27 546  Google Scholar Google Scholar[56] Xie L, Huang X, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. 2 5244  Google Scholar Google Scholar[57] Zhang T, Guo M F, Jiang J Y, Zhang X Y, Lin Y H, Nan C W, Shen Y 2019 RSC Adv. 9 35990  Google Scholar Google Scholar[58] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055  Google Scholar Google Scholar[59] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217  Google Scholar Google Scholar[60] Chen L Q 2008 J. Am. Ceram. Soc. 91 1835  Google Scholar Google Scholar[61] Wang J J, Wang B, Chen L Q 2019 Annu. Rev. Mater. Res. 49 127  Google Scholar Google Scholar[62] Wang Y U, Tan D Q 2011 J. Appl. Phys. 109 104102  Google Scholar Google Scholar[63] Wang Y U, Tan D Q, Krahn J 2011 J. Appl. Phys. 110 034115 [64] Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380  Google Scholar Google Scholar[65] Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843  Google Scholar Google Scholar[66] Shen Z H, Shen Y, Cheng X X, Lin H X, Chen L Q, Nan C W 2020 J. Materiomics 6 573  Google Scholar Google Scholar[67] Shen Z H, Wang J J, Zhang X, Lin Y H, Nan C W, Chen L Q, Shen Y 2017 Appl. Phys. Lett. 111 092901  Google Scholar Google Scholar
- 
				
    
    
    图 4 (a) PVDF和P(VDF-CTFE)-g-PS接枝共聚物的极化机制示意图; (b) P(VDF-CTFE)和P(VDF-CTFE)-g-PS接枝共聚物的D-E曲线[21]; (c) PVDF的压折工艺图解; (d) 压折和拉伸PVDF薄膜储能性能的比较[30] Figure 4. (a) Schematic models of polarization mechanisms for PVDF and P(VDF-CTFE)-g-PS; (b) D-E loops for the hot-pressed and stretched films of P(VDF-CTFE) and P(VDF-CTFE)-g-PS graft copolymers[21]; (c) schematic demonstration of pressed-and-folding technique for PVDF; (d) a comparison of electric energy storage properties of pressed-and-folded and stretched films[30]. 图 5 (a) PEI中超细纳米颗粒的体积分数与介电常数的关系[33]; (b) 不同取向的纳米纤维填料对介电常数的影响[37]; (c) 不同维度的Al2O3与c-BCB复合后的击穿场强与温度稳定性[40]; (d) PVDF/Ca2Nb3O10复合材料的击穿场强和储能密度[41] Figure 5. (a) Relationship between volume fraction of ultrafine nanoparticles and dielectric constant in PEI[33]; (b) influence of nanofiber fillers with different orientations on dielectric constant[37]; (c) breakdown field strength and temperature stability of Al2O3 with different dimensions and c-BCB composites[40]; (d) breakdown field strength and energy storage density of PVDF/Ca2Nb3O10 composites[41]. 图 6 (a) P(VDF-HFP)/BaTiO3复合材料中不同梯度分布的示意图[42]; (b) BNNS和BZT填料互穿结构的示意图[43]; (c) BN和BT共混填料的制备过程和电镜图[44] Figure 6. (a) Schematic diagram of different gradient distributions in P(VDF-HFP)/BaTiO3 composites[42]; (b) schematic diagram of interpenetrating structure of BNNS and BZT fillers[43]; (c) preparation process and electron micrograph of BN and BT blend filler[44]. 图 7 (a) 三明治结构复合薄膜的示意图和断面电镜图[46]; (b) 分别掺有BNNS和BST的叠层结构示意图和电镜图[47]; (c) 多层复合材料的制备流程图和示意图[48] Figure 7. (a) Schematic diagram and sectional electron microscope of sandwich composite film[46]; (b) schematic diagram and electron micrograph of laminated structure doped with BNNS and BST respectively[47]; (c) preparation flow chart and schematic diagram of multilayer composite materials[48]. 图 8 (a) GMA功能化PVDF-HFP的流程图[56]; (b) PTFEMA, PHFBMA和PDFHM原位聚合的示意图和电镜图[57]; (c) BaTiO3@TiO2多级结构的电镜图[58]; (d) BaTiO3@TiO2@Al2O3同轴纤维的电镜图和示意图[59] Figure 8. (a) Flow chart of GMA functionalized PVDF-HFP[56]; (b) schematic diagram and electron micrograph of in-situ polymerization of PTFEMA, PHFBMA and PDFHM[57]; (c) electron micrograph of BaTiO2@TiO2 multilevel structure[58]; (d) electron micrograph and schematic diagram of BaTiO3@TiO2@Al2O3 coaxial fiber[59]. 图 9 (a) 颗粒填料取向分布与介电常数的关系[62]; (b) 多物理场协同击穿的路径演化及能量分布[65]; (c) 不同填料种类的体积分数与击穿场强的关系[64]; (d) 空间电荷分布的示意图[67] Figure 9. (a) Relationship between orientation distribution of particulate filler and dielectric constant[62]; (b) path evolution and energy distribution of multi-physical field cooperative breakdown[65]; (c) the relationship between the volume fraction of different fillers and the breakdown field strength[64]; (d) schematic diagram of space charge distribution[67]. 
- 
				
[1] Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576  Google Scholar Google Scholar[2] Prateek, Thakur V K, Gupta R K 2016 Chem. Rev. 116 4260  Google Scholar Google Scholar[3] 成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469  Google Scholar Google ScholarChen S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469  Google Scholar Google Scholar[4] Barshaw E J, White J, Chait M J, Cornette J B, Rabuffi M 2007 IEEE Trans. Magn. 43 223  Google Scholar Google Scholar[5] Chen Q, Shen Y, Zhang S, Zhang Q M 2015 Annu. Rev. Mater. Res. 45 433  Google Scholar Google Scholar[6] Laihonen S J, Gafvert U, Schutte T, Gedde U 2007 IEEE Trans. Dielectr. Electr. Insul. 14 275  Google Scholar Google Scholar[7] Rabuffi M, Picci G 2002 IEEE Trans. Plasma Sci. 30 1939  Google Scholar Google Scholar[8] Kawa H 1969 Jpn. J. Appl. Phys. 8 975  Google Scholar Google Scholar[9] Lovinger A J 1983 Science 220 1115  Google Scholar Google Scholar[10] Martins P, Lopes A C, Lanceros-Mendez S 2014 Prog. Polym. Sci. 39 683  Google Scholar Google Scholar[11] Zhu L, Wang Q 2012 Macromolecules 45 2937  Google Scholar Google Scholar[12] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749  Google Scholar Google Scholar[13] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103  Google Scholar Google Scholar[14] Li Z, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79  Google Scholar Google Scholar[15] Forsythe J S, Hill D 2000 Prog. Polym. Sci. 25 101  Google Scholar Google Scholar[16] Chu B, Zhou X, Neese B, Zhang Q M, Bauer F 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1162  Google Scholar Google Scholar[17] Xu H, Cheng Z Y, Olson D, Mai T, Zhang Q M, Kavarnos G 2001 Appl. Phys. Lett. 78 2360  Google Scholar Google Scholar[18] Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334  Google Scholar Google Scholar[19] Zhou X, Chu B, Neese B, Lin M, Zhang Q 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1133  Google Scholar Google Scholar[20] Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S H, Zhang Q M 2009 Appl. Phys. Lett. 94 162901  Google Scholar Google Scholar[21] Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L 2011 Adv. Funct. Mater. 21 3176  Google Scholar Google Scholar[22] Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L 2011 Macromolecules 44 2190  Google Scholar Google Scholar[23] Terzic I, Meereboer N L, Acuautla M, Portale G, Loos K 2019 Nat. Commun. 10 601  Google Scholar Google Scholar[24] Li J, Tan S, Ding S, Li H, Yang L, Zhang Z 2012 J. Mater. Chem. 22 23468  Google Scholar Google Scholar[25] Bornand V, Vacher C, Collet A, Papet P 2009 Mater. Chem. Phys. 117 169  Google Scholar Google Scholar[26] Kim E J, Kim K A, Yoon S M 2016 J. Phys. D: Appl. Phys. 49 075105  Google Scholar Google Scholar[27] Okabe Y, Murakami H, Osaka N, Saito H, Inoue T 2010 Polymer 51 1494  Google Scholar Google Scholar[28] Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A 2019 Polym. Test. 73 222  Google Scholar Google Scholar[29] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236  Google Scholar Google Scholar[30] Meng N, Ren X, Santagiuliana G, Ventura L, Bilotti E 2019 Nat. Commun. 10 4535  Google Scholar Google Scholar[31] Yu K, Niu Y, Zhou Y, Bai Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519  Google Scholar Google Scholar[32] Hao Y, Wang X, Bi K, Zhang J, Li L 2017 Nano Energy 31 49  Google Scholar Google Scholar[33] Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992  Google Scholar Google Scholar[34] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622  Google Scholar Google Scholar[35] Huang X, Sun B, Zhu Y, Li S, Jiang P 2019 Prog. Mater. Sci. 100 187  Google Scholar Google Scholar[36] Zhang H, Marwat M A, Xie B, Ashtar M, Ye Z G 2019 ACS Appl. Mater. Interfaces 12 1  Google Scholar Google Scholar[37] Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469  Google Scholar Google Scholar[38] Wang G, Huang X, Jiang P 2015 ACS Appl. Mater. Interfaces 7 18017  Google Scholar Google Scholar[39] Zhang X, Jiang J Y, Shen Z H, Dan Z K, Shen Y 2018 Adv. Mater. 30 1707269  Google Scholar Google Scholar[40] Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875  Google Scholar Google Scholar[41] Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227  Google Scholar Google Scholar[42] Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112  Google Scholar Google Scholar[43] Jiang J Y, Shen Z H, Cai X K, Qian Z K, Dan Z K, Lin Y H, Liu B L, Nan C W, C, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411  Google Scholar Google Scholar[44] Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204  Google Scholar Google Scholar[45] Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. 7 2965  Google Scholar Google Scholar[46] Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658  Google Scholar Google Scholar[47] Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292  Google Scholar Google Scholar[48] Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220  Google Scholar Google Scholar[49] Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202  Google Scholar Google Scholar[50] Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669  Google Scholar Google Scholar[51] Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q, He J L 2019 Adv. Mater. 31 e1807722  Google Scholar Google Scholar[52] Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934  Google Scholar Google Scholar[53] Zhang X, Li B-W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096  Google Scholar Google Scholar[54] Pourrahimi A M, Olsson R T, Hedenqvist M S 2018 Adv. Mater. 30 1703624  Google Scholar Google Scholar[55] Huang X Y, Jiang P K 2015 Adv. Mater. 27 546  Google Scholar Google Scholar[56] Xie L, Huang X, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. 2 5244  Google Scholar Google Scholar[57] Zhang T, Guo M F, Jiang J Y, Zhang X Y, Lin Y H, Nan C W, Shen Y 2019 RSC Adv. 9 35990  Google Scholar Google Scholar[58] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055  Google Scholar Google Scholar[59] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217  Google Scholar Google Scholar[60] Chen L Q 2008 J. Am. Ceram. Soc. 91 1835  Google Scholar Google Scholar[61] Wang J J, Wang B, Chen L Q 2019 Annu. Rev. Mater. Res. 49 127  Google Scholar Google Scholar[62] Wang Y U, Tan D Q 2011 J. Appl. Phys. 109 104102  Google Scholar Google Scholar[63] Wang Y U, Tan D Q, Krahn J 2011 J. Appl. Phys. 110 034115 [64] Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380  Google Scholar Google Scholar[65] Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843  Google Scholar Google Scholar[66] Shen Z H, Shen Y, Cheng X X, Lin H X, Chen L Q, Nan C W 2020 J. Materiomics 6 573  Google Scholar Google Scholar[67] Shen Z H, Wang J J, Zhang X, Lin Y H, Nan C W, Chen L Q, Shen Y 2017 Appl. Phys. Lett. 111 092901  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 21324
- PDF Downloads: 768
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							 
							 
							