搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超电容储能电极材料的密度泛函理论研究

徐强 司雪 佘维汉 杨光敏

引用本文:
Citation:

超电容储能电极材料的密度泛函理论研究

徐强, 司雪, 佘维汉, 杨光敏

Density functional theory study of supercapacitor for energy storage electrode materials

Xu Qiang, Si Xue, She Wei-Han, Yang Guang-Min
PDF
HTML
导出引用
  • 由于量子限域效应和态密度的限制, 石墨烯、硅烯等二维材料的量子电容在费米能级附近趋近于零. 基于密度泛函理论的第一性原理研究发现, 掺杂和吸附使石墨烯等二维电极材料的电子结构得以有效的调制, 它促进狄拉克点附近局域电子态的形成和/或费米能级的移动, 从而使量子电容得到了提高. 比较Ti (Au, Ag, Cu, Al)和3-B (N, P, S)掺杂单空位石墨烯(硅烯, 锗烯)的量子电容, 发现3-N掺杂单空位石墨烯和Ti原子吸附单空位硅烯、锗烯的量子电容明显得到了提升, 量子电容分别为118.42 μF/cm2, 79.84 μF/cm2和76.54 μF/cm2. 另外还研究了3-N掺杂三种烯类的浓度效应, 随掺杂浓度的增加, 量子电容呈增加趋势. 通过研究各掺杂体系的热力学稳定性问题, 发现Ti是最稳定的吸附原子, 因为Ti和C原子之间可以形成强键. 在B, N, P, S掺杂单空位硅烯和锗烯中, S是最稳定的掺杂原子, 而对于石墨烯, N掺杂的形成能最低, 量子电容最高. 上述二维电极材料的理论模拟计算为超级电容器和场效应晶体管中的实际应用做出了探索性的工作.
    Double electric layer capacitor is a kind of supercapacitor with high power density, but has relatively low energy density. Improving the quantum capacitances of materials will be a new way to increase their total interface capacitances. We design a two-dimensional electrode material with a high specific capacity and stable crystal structure. Due to the quantum confinement effect and the density of states, the quantum capacitances of two-dimensional materials such as graphene and silicene approach to zero when they are near the Fermi level. On the basis of the first principles of density functional theory, doping and adsorption can effectively modulate the electronic structure of two-dimensional electrode material such as graphene. It promotes the formation of the local state of the electrode material near the Dirac point and/or the movement of the Fermi level, thereby improving the quantum capacitance. Compared with the quantum capacitance of Ti (Au, Ag, Cu, Al), and 3-B (N, P, S) doped single-vacancy graphene (silicene, germanene), the quantum capacitance of 3-N doped single-vacancy graphene and of Ti atom adsorbed single-vacancy silicene/germanene are both significantly improved, and their quantum capacitances are as high as 118.42 μF/cm2, 79.84 μF/cm2, and 76.54 μF/cm2. The concentration effects of 3N-doped three kinds of alkenes are studied, and the results show that the quantum capacitance is enhanced with the doping concentration increasing. It is also found by studying the thermodynamic stability of the doped systems that Ti is the most stable adsorbed atom because of the strong bond between Ti atom and C atom. The S is the most stable doping atom in B, N, P, S doped single-vacancy silicene and germanene. For graphene, N doping has the lowest formation energy and the best quantum capacitance. This study intends to clarify the controversy regarding the energy storage enhancement of two-dimensional double-layer supercapacitor materials, and to improve the quantum capacitance. The research results provide the guidance for understanding the quantum effects caused by optimizing the structure of two-dimensional electrode material. The above theoretical calculation of the mentioned two-dimensional electrode material provides some research ideas for improving the low energy density of electric double-layer supercapacitors.
      通信作者: 杨光敏, 249138087@qq.com
    • 基金项目: 吉林省科技厅项目(批准号: YDZJ202101ZYTS158)、长春工程学院自然科学基金(批准号: 320190005)、吉林省教育厅科研项目(批准号: JJKH20200828KJ)和长春师范大学自然科学基金(批准号: 001010)资助的课题
      Corresponding author: Yang Guang-Min, 249138087@qq.com
    • Funds: Project supported by the Jilin Provinical Science and Technology Department Project, China (Grant No. YDZ J202101ZYTS158), the Natural Science Foundation of Changchun Institute of Technology, China (Grant No.320190005), the Science Research Program of Jilin Provincial Education Department of China (Grant No.JJKH20200828KJ), and the Natural Science Foundation of Changchun Normal University, China (Grant No. 001010)
    [1]

    Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J 2011 Chem. Rev. 111 3577Google Scholar

    [2]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845Google Scholar

    [3]

    Premathilake D, Outlaw R A, Parler S G, Butler S M, Miller J R 2017 Carbon 111 231Google Scholar

    [4]

    Paek E, Pak A J, Kweon K E, Hwang G S 2013 J. Phys. Chem. C 11 75610

    [5]

    Zhang L L, Zhao X, Ji H, Stoller M D, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace R M, Ruoff R S 2012 Energy Environ. Sci. 5 9618Google Scholar

    [6]

    Stoller M D, Magnuson C W, Zhu Y W, Murali S, Suk J W, Piner R, Ruoff R S 2011 Energy Environ. Sci. 4 4685Google Scholar

    [7]

    Jeong H M, Lee J W S, Hin W H, Choi Y J, Shin H J, Kang J K, Choi J W 2011 Nano Lett. 11 2472Google Scholar

    [8]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178Google Scholar

    [9]

    You B, Wang L, Yao L, Yang J 2013 Chem. Commun. 49 5016Google Scholar

    [10]

    Pak A J, Paek E, Hwang G S 2013 Phys. Chem. Chem. Phys. 15 19741Google Scholar

    [11]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [12]

    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, Van den Broek B, Fanciulli, Houssa M, Molle A 2014 Adv. Mater. 26 2096Google Scholar

    [13]

    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015 J. Phys. Chem. C 119 6464Google Scholar

    [14]

    Yang G M, Xu Q, Fan X F, Zheng W T 2018 J. Phys. Chem. C 122 1903Google Scholar

    [15]

    Kresse G, Furthmüller J 1996 J. Comput. Mater. Sci. 6 15Google Scholar

    [16]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [17]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 4 66671

    [18]

    Sivek J, Sahin H, Partoens B, Peeters F M 2013 Phys. Rev. B 87 085444Google Scholar

    [19]

    De Padova P, Vogt P, Resta A, Avila J, Razado-Colambo I, Quaresima C, Ottaviani C, Bruhn T, Hirahara T, Shirai T, Hasegawa S, Asensio M C, Le Lay G 2013 Appl. Phys. Lett. 102 163106Google Scholar

    [20]

    Zhan C, Zhang Y, Cummings P T, Jiang D R 2016 Phys. Chem. Chem. Phys. 18 4668Google Scholar

  • 图 1  (a), (b) 金属原子分别在本征和单空位锗烯(硅烯, 石墨烯)上的最稳定吸附位置的吸附能, 掺杂浓度为3.1%; (c) 单空位锗烯(硅烯, 石墨烯)掺杂3-B (N, P, S)原子的形成能, 掺杂浓度9.3%

    Fig. 1.  (a), (b) The adsorption energies of adsorbing metal atoms in the strongest position on pristine and single-vacancy germanene (silicene, graphene) with thedoping concentration of 3.1%; (c) the formation energy of single-vacancy germanene (silicene, graphene) doped with triple-B (N, P, S) with the doping concentration of 9.3%.

    图 2  (a), (b)分别为本征石墨烯、硅烯、锗烯的质量比量子电容, 面积比量子电容(锗烯: 1 μF/cm2 = 11.48 F/g, 硅烯: 1 μF/cm2 = 27.37 F/g, 石墨烯: 1 μF/cm2 = 26.3 F/g)

    Fig. 2.  (a), (b) calculated specific quantum capacitance (CQ), areal CQ vs. potential drop of pristine graphene, siliceneand germanene. (For germanene 1 μF/cm2 = 11.48 F/g, silicene 1 μF/cm2 = 27.37 F/g, and graphene 1 μF/cm2 = 26.3 F/g).

    图 3  (a)−(c) 单空位石墨烯(硅烯, 锗烯)吸附Ti (Cu, Au, Ag, Al)和(d)−(f) 3-B (P, N, S)掺杂单空位石墨烯(硅烯, 锗烯)量子电容最大值的变化趋势图

    Fig. 3.  (a)−(c) Change trend chart of the maximum value of CQ for Ti (Cu, Au, Ag and Al) adsorbed single-vacancy grapheme (silicene, germanene), and (d)−(f) 3-B (P, N, S)-doped single-vacancy grapheme (silicene, germanene).

    图 4  (a) 单空位石墨烯(硅烯, 锗烯)吸附Ti, Au, Ag, Cu, Al体系中, 最高的量子电容与电势的关系图, 掺杂浓度为3.1%; (b) 单空位石墨烯(硅烯, 锗烯)掺杂三个B, N, P, S原子体系中, 最高的量子电容-电势关系图, 掺杂浓度为9.3%

    Fig. 4.  (a) Under the condition of doping concentration of 3.1%, the calculated quantum capacitance of single-vacancy grapheme (silicene, germanene) adsorbed withTi, Au, Ag, Cu, Al with the best properties, as a function of local electrode potential (Φ); (b) CQ of single-vacancy germanene (silicene, graphene) doping with triple-B (N, P, S)with the best properties, under the condition of doping concentration of 9.3%.

    图 5  (a) Ti掺杂单空位硅烯浓度的态密度(DOS)和局域态密度(LDOS)图, 掺杂浓度为3.1%; (b) 3-N原子掺杂单空位石墨烯的态密度(DOS)和局域态密度(LDOS)图, 掺杂浓度为9.4%

    Fig. 5.  Density of states (DOS) and local density of states (LDOS) of adsorbed Ti atoms on single-vacancy silicene with Ti concentration3.1%, and (b) triple N-doping single-vacancy grapheme with N concentration 9.4%.

    图 6  (a)−(f)不同掺杂浓度的单空位石墨烯(硅烯, 锗烯)掺杂三个N原子的量子电容以及表面电荷密度-电势的关系图

    Fig. 6.  (a)−(f)Calculated quantum capacitance and surface charge vs. potential drop of 3 N-doping single-vacancy grapheme (silicene, germanene) with different concentration, as a function of local electrode potential (Φ).

    图 7  本征石墨烯和石墨烯掺杂3-N原子的总界面电容, 双电层电容以及量子电容. 双电层电容是根据经典分子动力学模拟获得, 模拟条件为1 M NaCl水性电解液[20]

    Fig. 7.  The capacitance of triple-N doped with graphene and pristine grapheme, including quantum capacitance (CQ), electric double-layer capacitance (CD) and total interfacial capacitance(CT).The CD is obtained by classical MD simulation under the condition of 1 M NaCl aqueous electrolyte[20].

    表 1  在本征和单空位石墨烯、硅烯、锗烯上分别以不同位置吸附Al, Ag, Cu, Ti和Au金属原子的吸附能

    Table 1.  The adsorption energy of Al, Ag, Cu, Ti, Au adsorbed on pristine and single-vacancy graphene (silicene, germanene) with different configurations.

    System
    ΔEad (eV)
    HillValleyBridgeHollowH*
    GrapheneAl–0.888–0.902–1.012–5.399
    Ag0.035–0.0010.011–1.695
    Cu–0.220–0.217–0.057–3.599
    Ti–1.075–0.827–1.544–8.159
    Au–0.096–0.082–0.073–2.359
    SiliceneAl–2.794–2.907–2.573–5.502
    Ag–0.991–1.313–1.244–1.616–3.182
    Cu–1.549–2.368–2.764–4.538
    Ti–3.694–3.907–3.893–6.348
    Au–1.843–1.933–2.238–4.486
    GermaneneAl–1.815–2.716–2.520–4.908
    Ag–0.984–1.322–1.650–2.869
    Cu–1.377–2.091–2.489–3.812
    Ti–3.569–3.968–4.144–5.565
    Au–1.636–1.700–1.818–2.113–4.020
    下载: 导出CSV

    表 2  在单空位石墨烯、硅烯、锗烯上掺杂3-B(N, P, S)原子的形成能

    Table 2.  The formation energy of triple-B (N, P, S) doped single-vacancy graphene (silicene, germanene).

    System ΔEf (eV)BNPS
    Graphene4.6633.7357.7733.708
    Silicene7.8250.503–0.590–6.759
    Germanene8.6845.2560.575–6.149
    下载: 导出CSV
  • [1]

    Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J 2011 Chem. Rev. 111 3577Google Scholar

    [2]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845Google Scholar

    [3]

    Premathilake D, Outlaw R A, Parler S G, Butler S M, Miller J R 2017 Carbon 111 231Google Scholar

    [4]

    Paek E, Pak A J, Kweon K E, Hwang G S 2013 J. Phys. Chem. C 11 75610

    [5]

    Zhang L L, Zhao X, Ji H, Stoller M D, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace R M, Ruoff R S 2012 Energy Environ. Sci. 5 9618Google Scholar

    [6]

    Stoller M D, Magnuson C W, Zhu Y W, Murali S, Suk J W, Piner R, Ruoff R S 2011 Energy Environ. Sci. 4 4685Google Scholar

    [7]

    Jeong H M, Lee J W S, Hin W H, Choi Y J, Shin H J, Kang J K, Choi J W 2011 Nano Lett. 11 2472Google Scholar

    [8]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178Google Scholar

    [9]

    You B, Wang L, Yao L, Yang J 2013 Chem. Commun. 49 5016Google Scholar

    [10]

    Pak A J, Paek E, Hwang G S 2013 Phys. Chem. Chem. Phys. 15 19741Google Scholar

    [11]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [12]

    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, Van den Broek B, Fanciulli, Houssa M, Molle A 2014 Adv. Mater. 26 2096Google Scholar

    [13]

    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015 J. Phys. Chem. C 119 6464Google Scholar

    [14]

    Yang G M, Xu Q, Fan X F, Zheng W T 2018 J. Phys. Chem. C 122 1903Google Scholar

    [15]

    Kresse G, Furthmüller J 1996 J. Comput. Mater. Sci. 6 15Google Scholar

    [16]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [17]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 4 66671

    [18]

    Sivek J, Sahin H, Partoens B, Peeters F M 2013 Phys. Rev. B 87 085444Google Scholar

    [19]

    De Padova P, Vogt P, Resta A, Avila J, Razado-Colambo I, Quaresima C, Ottaviani C, Bruhn T, Hirahara T, Shirai T, Hasegawa S, Asensio M C, Le Lay G 2013 Appl. Phys. Lett. 102 163106Google Scholar

    [20]

    Zhan C, Zhang Y, Cummings P T, Jiang D R 2016 Phys. Chem. Chem. Phys. 18 4668Google Scholar

  • [1] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [4] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [5] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [7]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [8] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [9] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究. 物理学报, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [11] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [12] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [13] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [14] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [15] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [17] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [18] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [19] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [20] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
计量
  • 文章访问数:  4244
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 修回日期:  2021-02-24
  • 上网日期:  2021-05-13
  • 刊出日期:  2021-05-20

/

返回文章
返回