Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite

Wang Jiao Liu Shao-Hui Chen Chang-Qing Hao Hao-Shan Zhai Ji-Wei

Citation:

Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite

Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei
PDF
HTML
Get Citation
  • With the development of power electronic device equipment towards miniaturization and high performance, the dielectric materials with high energy storage density, high charge and discharge efficiency, easy processing and molding, and stable performance are urgently needed. At present, Barium titanate-based dielectric ceramics have a high dielectric constant, but low breakdown field strength and poor flexibility. Polymer-based dielectric materials have ultra-high functional density, ultra-fast charge and discharge response time, good flexibility, high breakdown field strength, light weight and other advantages, but low dielectric constant and low polarization strength. Their energy storage density is low, which limits the power capacitor component size and application scope. In order to obtain material with high energy storage performance, it was proposed to add high dielectric constant inorganic ceramic fillers to the polymer through a composite method to improve the energy storage performance of the material. The interface plays a vital role in the performance of the composite material. In this article, we review the latest research advance in the interface design and control of barium titanate/polyvinylidene fluoride composite dielectric materials. The effects of interface modification methods such as organic surface modification, inorganic functionalization and organic-inorganic synergistic modification on the polarization and energy storage performance of composite materials are summarized. The existing interface models and theoretical research methods are discussed, and the existing challenges and practical limitations, and the future research directions are prospected.
      Corresponding author: Wang Jiao, wangjiao_1203@163.com ; Zhai Ji-Wei, apzhai@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51902088) and the Programs for Tackling Key Problems in Science and Technology of Henan Province, China (Grant Nos. 202102210002, 202102210041)
    [1]

    Guo F, Shen X, Zhou J, Liu D, Zheng Q, Yang J, Jia B, Lau A K, Kim J K 2020 Adv. Funct. Mater. 30 1910826Google Scholar

    [2]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [3]

    Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Li G, Cui Y, Wang X, Dang Z, Lei Q 2019 Nano Energy 56 138Google Scholar

    [4]

    Huang X, Jiang P 2015 Adv. Mater. 27 546Google Scholar

    [5]

    Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen C R, Wan C 2019 Chem. Soc. Rev. 48 4424Google Scholar

    [6]

    Liu J, Li M, Zhao Y, Zhang X, Lu J, Zhang Z 2019 J. Mater. Chem. A 7 19407Google Scholar

    [7]

    Dun C, Kuang W, Kempf N, Saeidi-Javash M, Singh D J, Zhang Y 2019 Adv. Sci. 6 1901788Google Scholar

    [8]

    Chen J, Huang X, Sun B, Jiang P 2019 ACS Nano 13 337Google Scholar

    [9]

    Bi J, Gu Y, Zhang Z, Wang S, Li M, Zhang Z 2016 Mater. Design 89 933Google Scholar

    [10]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [11]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [12]

    Lewis T J 2005 J. Phys. D Appl. Phys. 38 202Google Scholar

    [13]

    Dang Z M, Yu Y F, Xu H P, Bai J 2008 Compos. Sci. Technol. 68 171Google Scholar

    [14]

    Fan B H, Zha J W, Wang D R, Zhao J, Zhang Z F, Dang Z M 2013 Compos. Sci. Technol. 80 66Google Scholar

    [15]

    Zhou Z, Lin Y R, Tang H X, Sodano H A 2013 Nanotechnology 24 095602Google Scholar

    [16]

    Tang H X, Lin Y R, Andrews C, Sodano H A 2011 Nanotechnology 22 015702Google Scholar

    [17]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [18]

    Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J 2010 Chem. Mater. 22 1567Google Scholar

    [19]

    Dang Z M, Wang H Y, Zhang Y H, Qi J Q 2005 Macromol. Rapid Commun. 26 1185Google Scholar

    [20]

    Zhang Y, Wang Y, Deng Y, Guo Y J T, Bi W C, Li M, Luo Y, Bai J B 2012 Appl. Phys. Lett. 101 192904Google Scholar

    [21]

    Tang H X, Zhou Z, Sodano H A 2014 ACS Appl. Mater. Interfaces 6 5450Google Scholar

    [22]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 960Google Scholar

    [23]

    Wang Z P, Nelson J K, Hillborg H, Zhao S, Schadler L S 2013 Compos. Sci. Technol. 76 29Google Scholar

    [24]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mater. Chem. 22 8063Google Scholar

    [25]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [26]

    Hu P H, Song Y, Liu H Y, Shen Y, Lin Y H, Nan C W 2013 J. Mater. Chem. A 1 1688Google Scholar

    [27]

    Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar

    [28]

    Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, Li M Y, Jiang S 2017 J. Mater. Chem. A 5 6070Google Scholar

    [29]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE. Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [30]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [31]

    Wu C, Huang X Y, Wu X F, Xie L Y, Yang K, Jiang P K 2013 Nanoscale 5 3847Google Scholar

    [32]

    Wu C, Huang X Y, Wang G L, Lv L B, Chen G, Li G Y, Jiang P K 2013 Adv. Funct. Mater. 23 506Google Scholar

    [33]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2013 Adv. Funct. Mater. 23 1824Google Scholar

    [34]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2012 Nanotechnology 23 455705Google Scholar

    [35]

    Liu S, Shen B, Hao H, Zhai J 2019 J. Mater. Chem. C 7 15118Google Scholar

    [36]

    Chen J, Wang Y, Yuan Q, Xu X, Niu Y, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [37]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [38]

    Dang Z M, Wang H Y, Xu H P 2006 Appl. Phys. Lett. 89 112902Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

    [40]

    Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184Google Scholar

    [41]

    Dou X L, Liu X L, Zhang Y, Feng H, Chen J F, Du S 2009 Appl. Phys. Lett. 95 132904Google Scholar

    [42]

    Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W 2007 Adv. Mater. 19 1001Google Scholar

    [43]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [44]

    Siddabattuni S, Schuman T P, Dogan F 2011 Mater. Sci. Eng. B 176 1422Google Scholar

    [45]

    Wang S, Huang X, Wang G, Wang Y, He J, Jiang P 2015 J. Phys. Chem. C 119 25307Google Scholar

    [46]

    Liu S H, Xue S X, Zhang W Q, Zhai J W, Chen G H 2014 J. Mater. Chem. A 2 18040Google Scholar

    [47]

    Liu S H, Zhai J W, Wang J W, Xue S X, Zhang W Q 2014 ACS Appl. Mater. Interfaces 6 1533Google Scholar

    [48]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273Google Scholar

    [49]

    Wang D R, Zhou T, Zha J W, Zhao J, Shi C Y, Dang Z M 2013 J. Mater. Chem. A 1 6162Google Scholar

    [50]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [51]

    Zhu M, Huang X Y, Yang K, Zhai X, Zhang J, He J L, Jiang P K 2014 ACS Appl. Mater. Interfaces 6 19644Google Scholar

    [52]

    Yang K, Huang X Y, Huang Y H, Xie L Y, Jiang P K 2013 Chem. Mater. 25 2327Google Scholar

    [53]

    Jung H M, Kang J H, Yang S Y, Won J C, Kim Y S 2010 Chem. Mater. 22 450Google Scholar

    [54]

    Pan Z B, Yao L M, Zhai J W, Yao X, Chen H 2018 Adv. Mater. 30 1705662Google Scholar

    [55]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J 2009 Adv. Mater. 21 2077Google Scholar

    [56]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [57]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [58]

    Xu P, Zhang X Y 2011 Eur. Polym. J. 47 1031Google Scholar

    [59]

    Sencadas V, Lanceros-Mendez S, Serra R S I, Balado A A, Ribelles J L G 2012 Eur. Phys. J. E 35 1Google Scholar

    [60]

    Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [61]

    Li Q, Han K, Gadinski M R, Zhang G, Wang Q 2014 Adv. Mater. 26 6244Google Scholar

    [62]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L Q, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [63]

    Liu S, Wang J, Wang J, Shen B, Zhai J, Guo C, Zhou J 2017 Mater. Lett. 189 176Google Scholar

    [64]

    Liu S, Wang J, Shen B, Zhai J, Hao H, Zhao L 2017 J. Alloys Compd. 696 136Google Scholar

    [65]

    Liu S, Xue S, Shen B, Zhai J 2015 Appl. Phys. Lett. 107 032907Google Scholar

    [66]

    Huang J J, Zhang Y, Ma T, Li H T, Zhang L W 2010 Appl. Phys. Lett. 96 042902Google Scholar

    [67]

    Zhang Y, Huang J J, Ma T, Wang X R, Deng C S, Dai X M 2011 J. Am. Ceram. Soc. 94 1805Google Scholar

    [68]

    Luo S, Yu J, Yu S, Sun R, Cao L, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [69]

    Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y 2018 Nano Energy 51 513Google Scholar

    [70]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [71]

    Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

  • 图 1  电介质薄膜电容器的主要应用

    Figure 1.  Application of dielectric film capacitor.

    图 2  有机-无机复合材料模型

    Figure 2.  Model of organic-inorganic composite material model.

    图 3  钛酸钡纤维串联模型与并联模型的储能密度对比图[28]

    Figure 3.  Comparison of energy storage density of barium titanate nanofibers in series and parallel models (BTnws, BaTiO3 nanowires)[28].

    图 4  核壳结构填料合成的示意图及TEM图[51]

    Figure 4.  Schematic diagram and TEM diagram of core-shell structure fillers[51]

    图 5  不同厚度核壳结构的Na2Ti3O7@PMPC纳米纤维[57]

    Figure 5.  Core-shell structure Na2Ti3O7@PMPC nanofibers with different thickness[57].

    图 6  复合材料能量存储和释放的示意图 (a) 没有界面极化; (b)界面极化较强; (c) 界面极化较弱[65]

    Figure 6.  Schematic diagram of energy storage and release of composites: (a) No interfacial polarization; (b) stronger interfacial polarization; (c) weaker interfacial polarization[65].

    图 7  复合材料的储能性能与有限元模拟结果[54]

    Figure 7.  Energy storage performance and finite element simulation results of composite materials[54].

    图 8  钛酸钡@TiO2/聚合物复合材料储能密度与电场强度的关系[71]

    Figure 8.  Relationship between energy storage density and electric field of BaTiO3@TiO2/polymer composites[71].

    表 1  不同聚合物介电性能、储能性能的比较

    Table 1.  Comparison of dielectric properties and energy storage properties of different polymers.

    薄膜材料1 kHz介电常数最高使用温度/℃击穿电压/kV·m–1损耗/%储能密度/J·cm–3
    聚丙烯 (PP)2.21056400 < 0.021—1.2
    聚酯 (PET)3.31255700 < 0.501—1.5
    聚碳酸酯 (PC)2.81255280 < 0.150.5—1
    聚乙烯 (PEN)3.21255500 < 0.151—1.5
    聚苯硫醚 (PPS)3.02005500 < 0.031—1.5
    聚偏氟乙烯 (PVDF)121255900 < 1.802.4
    DownLoad: CSV

    表 2  提高复合材料介电常数的方法及理论

    Table 2.  Methods and theories of improving dielectric constant of composite materials.

    理论名称渗流理论Lichtenecher模型Bruggeman模型Maxwell-Garnett模型
    公式$\begin{array}{l} {\sigma _{\rm{c}}} \propto {(f - {f_{\rm{c}}})^t} \\ {\sigma _{\rm{c}}} \propto {({f_{\rm{c}}} - f)^{ - q}} \\ \end{array} $$\varepsilon _{_{{\rm{eff}}}}^{^n} = {f_1}\varepsilon _1^n + {f_2}\varepsilon _2^n$$f\dfrac{ { {\varepsilon _1} \!-\! {\varepsilon _{ {\rm{eff} } } } } }{ {2{\varepsilon _{ {\rm{eff} } } } \!+\! 2{\varepsilon _1} } } \!+\! (1 \!-\! f)\dfrac{ { {\varepsilon _2} \!-\! {\varepsilon _{ {\rm{eff} } } } } }{ { {\varepsilon _{ {\rm{eff} } } } \!+\! 2{\varepsilon _2} } } \!=\! 0$$\dfrac{ { {\varepsilon _{ {\rm{eff} } } } - {\varepsilon _1} } }{ { {\varepsilon _{ {\rm{eff} } } } + 2{\varepsilon _1} } } = f\dfrac{ { {\varepsilon _1} - {\varepsilon _2} } }{ { {\varepsilon _1} + 2{\varepsilon _2} } }$
    字母的
    含义
    ${f_{\rm{c}}}$表示渗流阈值,
    ${\sigma _{\rm{c}}}$为电导率, tq
    别为临界参数
    ${\varepsilon _{{\rm{eff}}}}$为复合材料的介电常数,
    ${\varepsilon _1}$为基相的介电常数,
    ${\varepsilon _2}$为分散相的介电常数,
    ${f_2}$为填料的体积分数,
    n = 1, –1, 0
    ${\varepsilon _{{\rm{eff}}}}$为复合材料的介电常数,
    ${\varepsilon _1}$, ${\varepsilon _2}$分别为填料和基体的介
    电常数, $f$为填料的体积分数
    ${\varepsilon _{{\rm{eff}}}}$为复合材料的介电常数,
    ${\varepsilon _1}$, ${\varepsilon _2}$分别为填料和基体的介
    电常数, $f$为填料的体积分数
    适用条件将体系的微观结构与
    宏观性能联系起来
    可以判断两材料复合并
    联或者串联模型
    可以成功解释复合材料由
    绝缘体向导体的转变
    可以模拟两种绝缘体构成
    的复合材料的介电常数
    不足之处影响渗流值的因素众多,
    如填料的尺寸、形貌等
    填料含量较高时, 利用此模型
    与测量值有明显的差距.
    仅当填料浓度小于渗
    流阈值时公式才成立
    没有考虑到填料相的电阻率,
    预测的介电常数值比实际值大
    DownLoad: CSV
  • [1]

    Guo F, Shen X, Zhou J, Liu D, Zheng Q, Yang J, Jia B, Lau A K, Kim J K 2020 Adv. Funct. Mater. 30 1910826Google Scholar

    [2]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [3]

    Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Li G, Cui Y, Wang X, Dang Z, Lei Q 2019 Nano Energy 56 138Google Scholar

    [4]

    Huang X, Jiang P 2015 Adv. Mater. 27 546Google Scholar

    [5]

    Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen C R, Wan C 2019 Chem. Soc. Rev. 48 4424Google Scholar

    [6]

    Liu J, Li M, Zhao Y, Zhang X, Lu J, Zhang Z 2019 J. Mater. Chem. A 7 19407Google Scholar

    [7]

    Dun C, Kuang W, Kempf N, Saeidi-Javash M, Singh D J, Zhang Y 2019 Adv. Sci. 6 1901788Google Scholar

    [8]

    Chen J, Huang X, Sun B, Jiang P 2019 ACS Nano 13 337Google Scholar

    [9]

    Bi J, Gu Y, Zhang Z, Wang S, Li M, Zhang Z 2016 Mater. Design 89 933Google Scholar

    [10]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [11]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [12]

    Lewis T J 2005 J. Phys. D Appl. Phys. 38 202Google Scholar

    [13]

    Dang Z M, Yu Y F, Xu H P, Bai J 2008 Compos. Sci. Technol. 68 171Google Scholar

    [14]

    Fan B H, Zha J W, Wang D R, Zhao J, Zhang Z F, Dang Z M 2013 Compos. Sci. Technol. 80 66Google Scholar

    [15]

    Zhou Z, Lin Y R, Tang H X, Sodano H A 2013 Nanotechnology 24 095602Google Scholar

    [16]

    Tang H X, Lin Y R, Andrews C, Sodano H A 2011 Nanotechnology 22 015702Google Scholar

    [17]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [18]

    Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J 2010 Chem. Mater. 22 1567Google Scholar

    [19]

    Dang Z M, Wang H Y, Zhang Y H, Qi J Q 2005 Macromol. Rapid Commun. 26 1185Google Scholar

    [20]

    Zhang Y, Wang Y, Deng Y, Guo Y J T, Bi W C, Li M, Luo Y, Bai J B 2012 Appl. Phys. Lett. 101 192904Google Scholar

    [21]

    Tang H X, Zhou Z, Sodano H A 2014 ACS Appl. Mater. Interfaces 6 5450Google Scholar

    [22]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 960Google Scholar

    [23]

    Wang Z P, Nelson J K, Hillborg H, Zhao S, Schadler L S 2013 Compos. Sci. Technol. 76 29Google Scholar

    [24]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mater. Chem. 22 8063Google Scholar

    [25]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [26]

    Hu P H, Song Y, Liu H Y, Shen Y, Lin Y H, Nan C W 2013 J. Mater. Chem. A 1 1688Google Scholar

    [27]

    Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar

    [28]

    Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, Li M Y, Jiang S 2017 J. Mater. Chem. A 5 6070Google Scholar

    [29]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE. Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [30]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [31]

    Wu C, Huang X Y, Wu X F, Xie L Y, Yang K, Jiang P K 2013 Nanoscale 5 3847Google Scholar

    [32]

    Wu C, Huang X Y, Wang G L, Lv L B, Chen G, Li G Y, Jiang P K 2013 Adv. Funct. Mater. 23 506Google Scholar

    [33]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2013 Adv. Funct. Mater. 23 1824Google Scholar

    [34]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2012 Nanotechnology 23 455705Google Scholar

    [35]

    Liu S, Shen B, Hao H, Zhai J 2019 J. Mater. Chem. C 7 15118Google Scholar

    [36]

    Chen J, Wang Y, Yuan Q, Xu X, Niu Y, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [37]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [38]

    Dang Z M, Wang H Y, Xu H P 2006 Appl. Phys. Lett. 89 112902Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

    [40]

    Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184Google Scholar

    [41]

    Dou X L, Liu X L, Zhang Y, Feng H, Chen J F, Du S 2009 Appl. Phys. Lett. 95 132904Google Scholar

    [42]

    Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W 2007 Adv. Mater. 19 1001Google Scholar

    [43]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [44]

    Siddabattuni S, Schuman T P, Dogan F 2011 Mater. Sci. Eng. B 176 1422Google Scholar

    [45]

    Wang S, Huang X, Wang G, Wang Y, He J, Jiang P 2015 J. Phys. Chem. C 119 25307Google Scholar

    [46]

    Liu S H, Xue S X, Zhang W Q, Zhai J W, Chen G H 2014 J. Mater. Chem. A 2 18040Google Scholar

    [47]

    Liu S H, Zhai J W, Wang J W, Xue S X, Zhang W Q 2014 ACS Appl. Mater. Interfaces 6 1533Google Scholar

    [48]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273Google Scholar

    [49]

    Wang D R, Zhou T, Zha J W, Zhao J, Shi C Y, Dang Z M 2013 J. Mater. Chem. A 1 6162Google Scholar

    [50]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [51]

    Zhu M, Huang X Y, Yang K, Zhai X, Zhang J, He J L, Jiang P K 2014 ACS Appl. Mater. Interfaces 6 19644Google Scholar

    [52]

    Yang K, Huang X Y, Huang Y H, Xie L Y, Jiang P K 2013 Chem. Mater. 25 2327Google Scholar

    [53]

    Jung H M, Kang J H, Yang S Y, Won J C, Kim Y S 2010 Chem. Mater. 22 450Google Scholar

    [54]

    Pan Z B, Yao L M, Zhai J W, Yao X, Chen H 2018 Adv. Mater. 30 1705662Google Scholar

    [55]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J 2009 Adv. Mater. 21 2077Google Scholar

    [56]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [57]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [58]

    Xu P, Zhang X Y 2011 Eur. Polym. J. 47 1031Google Scholar

    [59]

    Sencadas V, Lanceros-Mendez S, Serra R S I, Balado A A, Ribelles J L G 2012 Eur. Phys. J. E 35 1Google Scholar

    [60]

    Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [61]

    Li Q, Han K, Gadinski M R, Zhang G, Wang Q 2014 Adv. Mater. 26 6244Google Scholar

    [62]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L Q, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [63]

    Liu S, Wang J, Wang J, Shen B, Zhai J, Guo C, Zhou J 2017 Mater. Lett. 189 176Google Scholar

    [64]

    Liu S, Wang J, Shen B, Zhai J, Hao H, Zhao L 2017 J. Alloys Compd. 696 136Google Scholar

    [65]

    Liu S, Xue S, Shen B, Zhai J 2015 Appl. Phys. Lett. 107 032907Google Scholar

    [66]

    Huang J J, Zhang Y, Ma T, Li H T, Zhang L W 2010 Appl. Phys. Lett. 96 042902Google Scholar

    [67]

    Zhang Y, Huang J J, Ma T, Wang X R, Deng C S, Dai X M 2011 J. Am. Ceram. Soc. 94 1805Google Scholar

    [68]

    Luo S, Yu J, Yu S, Sun R, Cao L, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [69]

    Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y 2018 Nano Energy 51 513Google Scholar

    [70]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [71]

    Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

  • [1] Liu Shu-Qian, Zhang Hai-Yan, Zhang Hui, Zhu Wen-Fa, Chen Yi-Ting, Liu Ya-Jie. Ultrasonic phase shift migration imaging of wrinkled defects in composite materials fused with circular statistical vectors. Acta Physica Sinica, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] Song Xiao-Fan, Min Dao-Min, Gao Zi-Wei, Wang Po-Xin, Hao Yu-Tao, Gao Jing-Hui, Zhong Li-Sheng. Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric. Acta Physica Sinica, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [3] Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng. Optimization strategies for energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [4] Liang Shuai-Bo, Yuan Tao, Qiu Yang, Zhang Zhen, Miao Ya-Ning, Han Jing-Feng, Liu Xiu-Tong, Yao Chun-Li. Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator. Acta Physica Sinica, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [5] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [6] Shen Zhong-Hui, Jiang Yan-Da, Li Bao-Wen, Zhang Xin. Reseach progress of ferroelectric polymer nanocomposites with high energy storage density. Acta Physica Sinica, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [7] Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan, Zhai Ji-Wei. Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [8] Jing Qi, Li Xiao-Juan. Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity. Acta Physica Sinica, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [9] Sun Zhi-Zheng, Xun Wei, Zhang Jia-Yong, Liu Chuan-Yang, Zhong Jia-Lin, Wu Yin-Zhong. Optical properties of BaTiO3 and its volume effects. Acta Physica Sinica, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [10] Li Zong-Bao, Wang Xia, Zhou Rui-Xue, Wang Ying, Li Yong. Surface modification in Cu-Ag codoped TiO2: the first-principle calculation. Acta Physica Sinica, 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [11] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [12] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [13] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [14] Huo Yan, Zhang Cun-Lin. Quantitative infrared prediction method for defect depth in carbon fiber reinforced plastics composite. Acta Physica Sinica, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [15] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [16] Gu Wei-Chao, Lü Guo-Hua, Chen Huan, Chen Guang-Liang, Feng Wen-Ran, Zhang Gu-Ling, Yang Si-Ze. Plasma electrolytic deposition on aluminum tubes. Acta Physica Sinica, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [17] Wang Pei-Ji, Zhou Zhong-Xiang, Su Yan, Rong Zhen-Yu, Zhao Peng, Zhang Feng-Jun. Influence of tantalum doping on the thermal conduction of BaTiO3 materials. Acta Physica Sinica, 2006, 55(4): 1959-1964. doi: 10.7498/aps.55.1959
    [18] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [19] Man Bao-Yuan, Zhang Yun-Hai, Lü Guo-Hua, Liu Ai-Hua, Zhang Qing-Gang, Guzman L., Adami M., Miotello A.. Study on surface modification of polytetrafluoroethylene by N+ ion implantation. Acta Physica Sinica, 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [20] Chen Chuan-Sheng, Chen Xiao-Hua, Li Xue-Qian, Zhang Gang, Yi Guo-Jun, Zhang Hua, Hu Jing. Carbon nanotubes reinforced nickel-phosphorus base composite coating. Acta Physica Sinica, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
Metrics
  • Abstract views:  11938
  • PDF Downloads:  462
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2020
  • Accepted Date:  25 September 2020
  • Available Online:  03 November 2020
  • Published Online:  05 November 2020

/

返回文章
返回