Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Piezoelectricity—An important property for ferroelectrics during last 100 years

Li Fei Zhang Shu-Jun Xu Zhuo

Citation:

Piezoelectricity—An important property for ferroelectrics during last 100 years

Li Fei, Zhang Shu-Jun, Xu Zhuo
PDF
HTML
Get Citation
  • As an important member of the dielectric family, ferroelectric materials are known for their various physical properties and have been attracted considerable attention from both scientific respect and technology respect. Piezoelectricity is one of the most important properties of ferroelectrics, which has been widely used in many devices for the conversion between electric energy and mechanical energy. For example, the main piezoelectric elements of underwater acoustic transducers, medical imaging systems, piezoelectric actuators, etc., are all ferroelectrics. In this paper, the history of the piezoelectric effect in lead-based perovskite ferroelectrics is introduced, and the relationship among the microstructure, the state of polarization and the piezoelectricity is discussed. In addition, we introduce some important factors for optimizing the piezoelectricity of ferroelectrics, such as morphotropic phase boundary, soft doping, polarization rotation, local structural heterogeneity, etc. It is expected that this paper could shed light on the future design of ferroelectric materials with various functionalities.
      Corresponding author: Li Fei, ful5@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51922083)
    [1]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111Google Scholar

    [2]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [3]

    Jaffe H 1958 J. Am. Ceram. Soc. 41 494Google Scholar

    [4]

    Damjanovic D 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1574Google Scholar

    [5]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [6]

    Damjanovic D 2006 The Science of Hysteresis (Vol. Ⅲ) (New York: Academic Press) pp337−465

    [7]

    Cross L E 1993 Ferroelectric Ceramics (Basel: Birkhäuser) pp1-86

    [8]

    Cross L E 1987 Ferroelectr. 76 241Google Scholar

    [9]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31Google Scholar

    [10]

    Li F, Zhang S J, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [11]

    Nomura S, Arima H, Kojima F 1973 Jpn. J. Appl. Phys. 12 531Google Scholar

    [12]

    Kuwata J, Uchino K, Nomura S 1982 Jpn. J. Appl. Phys. 21 1298Google Scholar

    [13]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [14]

    Zhang R, Jiang B, Cao W W 2003 Appl. Phys. Lett. 82 3737Google Scholar

    [15]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [16]

    Phelan D, Stock C, Rodriguez-Rivera J A, Chi S X, Leão J, Long X F, Xie Y J, Bokov A A, Ye Z G, Ganesh P, Gehring P M 2014 Proc. Nati. Acad. Sci. 111 1754Google Scholar

    [17]

    Li F, Zhang S J, Yang T N, Xu Z, Zhang N, Liu G, Wang J J, Wang J L, Cheng Z X, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [18]

    Li F, Zhang S J, Xu Z, Chen L Q 2017 Adv. Funct. Mater. 27 1700310Google Scholar

    [19]

    Xu G Y, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [20]

    Chen J, Chan H M, Harmer M P 1989 J. Am. Ceram. Soc. 72 593Google Scholar

    [21]

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Cheng L Q, Shrout T R, Zhang S J 2018 Nat. Mater. 17 349Google Scholar

    [22]

    Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S J 2019 Science 364 264Google Scholar

    [23]

    Li C C, Xu B, Lin D B, Zhang S J, Bellaiche L, Shrout T R, Li F 2020 Phys. Rev. B 101 140102Google Scholar

    [24]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [25]

    Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [26]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [27]

    Wang K, Li J F 2010 Adv. Funct. Mater. 20 1924Google Scholar

    [28]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [29]

    You Y M, Liao W Q, Zhao D W, Ye H Y, Zhang Y, Zhou Q H, Niu X H, Wang J L, Li P F, Fu D W, Wang Z M, Gao S, Yang K L, Liu J M, Li J Y, Yan Y F, Xiong R G 2017 Science 357 306Google Scholar

    [30]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

  • 图 1  (a)单畴铁电材料极化矢量长程有序示意图, 其中红色箭头代表偶极矩; (b)自发极化与温度关系示意图(以二级铁电相变为例); (c)介电常数与温度关系

    Figure 1.  (a) Schematic drawing of long-range ordered ferroelectrics with single-domain structure, where the red arrows indicate the electric dipoles; (b) the relationship between spontaneous polarization and temperature (taking the second-order ferroelectric phase transition as an example); (c) the relationship between dielectric permittivity and temperature.

    图 2  (a)热力学计算得到的三种不同组分PZT自由能与自发极化方向的关系, 图中给出了自发极化在$(1\bar 10)$面内由$[111]$方向转向$[\bar 1\bar 11]$方向过程中自由能的变化情况; (b)自发极化在$(1\bar 10)$面内, 由$[111]$方向转至$[\bar 1\bar 11]$方向的示意图

    Figure 2.  (a) Relationship between the free energy and the direction of spontaneous polarization of three PZT solid-solutions, calculated by phenomenological theory; (b) the schematic of the rotation of the spontaneous polarization from $[111]$ to $[\bar 1\bar 11]$ direction within the $(1\bar 10)$ plane.

    图 3  铅基陶瓷压电系数d33与居里温度TC的对应关系[1]

    Figure 3.  Relationship between d33 and TC for lead-based ceramics[1].

    图 4  弛豫铁电单晶与铅基陶瓷压电性能对比, 陶瓷数据源于文献[1], 晶体数据来源于文献[13]

    Figure 4.  Comparison of d33 between lead-based ceramics and relaxor-PT single crystals. The data of the ceramics is from Ref. [1]; the data of crystals is from Ref. [13].

    图 5  剪切与纵向压电效应示意图(对于任意的铁电畴, 所受外加电场总可以按照电场与自发极化方向关系分为两类: 1)电场方向与自发极化相同的分量, E3; 2)电场方向与自发极化垂直的分量, E1. 图中红色箭头代表自发极化方向, 绿色箭头代表加电场后的自发极化方向)

    Figure 5.  Schematic of shear and longitudinal piezoelectric responses. For a ferroelectric single-domain, the applied electric field can be divided into two categories: 1) The electric field (E3) parallel to the direction of the spontaneous polarization; 2) the electric field (E1) perpendicular to the direction of the spontaneous polarization. The red arrows represent the direction for the spontaneous polarization, and the green arrows represent the direction for the spontaneous polarization after applying an electric field.

    图 6  单畴PMN-PT弛豫铁电单晶剪切、纵向压电效应与准同型相界的关系[15]

    Figure 6.  Shear and longitudinal piezoelectric properties versus MPB for single-domain PMN-PT crystals[15].

    图 7  PMN与PZT单晶的中子弹性弥散散射实验结果(图中纵轴为弥散散射强度, 其强度越大, 则表示局域结构无序性越强; 插图给出了在(001)散射面附近测得的弹性散射强度等值线的形状)[16]

    Figure 7.  Neutron elastic diffuse scattering results for PMN and PZT single crystals. The y-axis represents the diffuse scattering intensity. The higher the intensity indicates the higher degree of the local structural heterogeneity. The inset figures give the contour maps of elastic scattering intensity measured near the (001) plane[16].

    图 8  单畴弛豫铁电单晶低温介电、压电性能[17,18] (a)单畴三方相PMN-0.28PT单晶横向介电常数(ε11); (b)单畴四方相PZN-0.15PT单晶横向介电常数(ε11); (c)两种晶体的低温剪切压电系数; (d)相比于传统铁电单晶, 弛豫铁电单晶室温高性能起因的示意图

    Figure 8.  Low-temperature dielectric and piezoelectric properties of single-domain relaxor ferroelectric single crystals[17,18]: (a) Transverse dielectric (ε11) permittivity for rhombohedral PMN-0.28PT crystal; (b) transverse dielectric (ε11) permittivity for tetragonal PZN-0.15PT crystals; (c) shear piezoelectric properties for relaxor-PT crystals; (d) the origin of the ultrahigh dielectric/piezoelectric properties in relaxor-PT ferroelectric crystals when compared to the conventional ferroelectric crystals.

    图 9  (a) PZN-0.15PT单晶与(b) PZN单晶的X射线弥散散射实验结果[19]

    Figure 9.  X-ray diffuse scattering results of (a) PZN-0.15PT and (b) PZN crystals[19].

    图 10  (a)四方相长程铁电畴中嵌入正交相极性微区的结构示意图; (b)正交相极性微区自由能随界面能作用增强的变化(热力学计算结果), 其中横轴表示极化矢量与[001]方向的夹角[17]

    Figure 10.  (a) Phase-field simulated microstructural variation of a tetragonal ferroelectric with embedded orthorhombic polar nanoregions (PNRs); (b) the change of free energy profiles of the PNRs with increasing the impact of interfacial energy. The x-axis represents the angle between the polar vector and the [001] direction[17].

    图 11  单畴PZN-0.15PT的相场模拟结果 (a)极化矢量方向随温度的变化, 图中颜色代表极化矢量与水平方向的夹角; (b)横向介电常数与温度关系的模拟结果[17]

    Figure 11.  Phase-field simulation results of single-domain PZN-0.15PT crystal: (a) Temperature-dependent microstructural variations (the color bar denotes the angle between the polar vector and the horizontal direction); (b) the transverse dielectric permittivity versus temperature[17].

    图 12  温度为350 K时, 单畴PZN-0.15PT晶体在横向电场作用下介观结构变化(a)和相应的极化强度-电场(P-E)曲线(b), 图(a)中, 颜色代表极化矢量与水平方向的夹角(为了与经典铁电畴性能进行对比, 图(a)和(b)中给出了没有极性微区的长程铁电的模拟结果)[17]

    Figure 12.  Microstructural variation under a transverse electric field for the single-domain PZN-0.15PT crystal at 350 K and the corresponding P-E curve. In panel (a), the color represents the angle between polar vectors and the horizontal direction. Panels (a) and (b) also gave the simulated results for a classical ferroelectric single-domain (tetragonal matrix)[17].

    图 13  掺杂PMN-0.28PT陶瓷低温介电常数(a)和介电损耗(b)[21]

    Figure 13.  Low-temperature dielectric permittivities (a) and dielectric losses (b) for PMN-0.28PT ceramics[21].

    图 14  Sm掺杂PMN-0.31PT陶瓷与PMN-36PT陶瓷介电性能的对比(图中横轴ΔT = TTC, 插图的横轴为陶瓷实际温度)[21]

    Figure 14.  Comparison of dielectric properties between Sm-doped PMN-0.31PT and PMN-36PT ceramics. The x-axis of the figure ΔT = TTC, while the x-axis of the inset figure represents the actual temperature of the ceramics[21].

    图 15  (a) Sr掺杂与(b) Sm掺杂PMN-0.31PT陶瓷介电性能性能对比(图(a)中给出了Sr掺杂PMN-0.31PT的室温介电和压电系数)[21]

    Figure 15.  Comparison of dielectric properties between (a) Sr-doped and (b) Sm-doped PMN-0.31PT ceramics. The room temperature dielectric and piezoelectric properties of Sr-doped PMN-0.31PT are given in (a)[21].

    图 16  软性(P5H)和硬性PZT陶瓷(P4)陶瓷低温(a)介电常数与(b)介电损耗

    Figure 16.  Low-temperature (a) dielectric permittivities and (b) dielectric losses for soft (P5H) and hard PZT (P4) ceramics.

    图 17  两种铁电单晶的低温介电性能 (a) [001]极化的BZT-BCT单晶, 室温为三方相, 晶体为韩国H Y Lee教授提供; (b) [001]极化的Ta掺杂KNN单晶, 室温为正交相

    Figure 17.  Low-temperature dielectric properties for (a) [001]-poled rhombohedral BZT-BCT crystal. The crystals were from Professor H Y Lee in Korea; (b) [001]-poled orthorhombic Ta-doped KNN crystal.

  • [1]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111Google Scholar

    [2]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [3]

    Jaffe H 1958 J. Am. Ceram. Soc. 41 494Google Scholar

    [4]

    Damjanovic D 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1574Google Scholar

    [5]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [6]

    Damjanovic D 2006 The Science of Hysteresis (Vol. Ⅲ) (New York: Academic Press) pp337−465

    [7]

    Cross L E 1993 Ferroelectric Ceramics (Basel: Birkhäuser) pp1-86

    [8]

    Cross L E 1987 Ferroelectr. 76 241Google Scholar

    [9]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31Google Scholar

    [10]

    Li F, Zhang S J, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [11]

    Nomura S, Arima H, Kojima F 1973 Jpn. J. Appl. Phys. 12 531Google Scholar

    [12]

    Kuwata J, Uchino K, Nomura S 1982 Jpn. J. Appl. Phys. 21 1298Google Scholar

    [13]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [14]

    Zhang R, Jiang B, Cao W W 2003 Appl. Phys. Lett. 82 3737Google Scholar

    [15]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [16]

    Phelan D, Stock C, Rodriguez-Rivera J A, Chi S X, Leão J, Long X F, Xie Y J, Bokov A A, Ye Z G, Ganesh P, Gehring P M 2014 Proc. Nati. Acad. Sci. 111 1754Google Scholar

    [17]

    Li F, Zhang S J, Yang T N, Xu Z, Zhang N, Liu G, Wang J J, Wang J L, Cheng Z X, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [18]

    Li F, Zhang S J, Xu Z, Chen L Q 2017 Adv. Funct. Mater. 27 1700310Google Scholar

    [19]

    Xu G Y, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [20]

    Chen J, Chan H M, Harmer M P 1989 J. Am. Ceram. Soc. 72 593Google Scholar

    [21]

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Cheng L Q, Shrout T R, Zhang S J 2018 Nat. Mater. 17 349Google Scholar

    [22]

    Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S J 2019 Science 364 264Google Scholar

    [23]

    Li C C, Xu B, Lin D B, Zhang S J, Bellaiche L, Shrout T R, Li F 2020 Phys. Rev. B 101 140102Google Scholar

    [24]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [25]

    Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [26]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [27]

    Wang K, Li J F 2010 Adv. Funct. Mater. 20 1924Google Scholar

    [28]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [29]

    You Y M, Liao W Q, Zhao D W, Ye H Y, Zhang Y, Zhou Q H, Niu X H, Wang J L, Li P F, Fu D W, Wang Z M, Gao S, Yang K L, Liu J M, Li J Y, Yan Y F, Xiong R G 2017 Science 357 306Google Scholar

    [30]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

  • [1] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] Jia Yan-Min, Wang Xiao-Xing, Zhang Qi-Chang, Wu Zheng. Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling. Acta Physica Sinica, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [3] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [5] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [6] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [7] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [8] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [9] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [10] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [11] Liao Tian-Jun, Lin Bi-Hong, Wang Yu-Hui. Performance characteristics of a novel high-efficientgraphene thermionic power device. Acta Physica Sinica, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [12] Deng Chang-Fa, Yan Shao-An, Wang Dong, Peng Jin-Feng, Zheng Xue-Jun. Optically modulated electromechanical coupling properties of single GaN nanobelt based on conductive atomic force microscopy. Acta Physica Sinica, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [13] Liao Tao, Sun Xiao-Wei, Song Ting, Tian Jun-Hong, Kang Tai-Feng, Sun Wei-Bin. Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab. Acta Physica Sinica, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [14] Hong Yuan-Ting, Ma Jiang-Ping, Wu Zheng, Ying Jing-Shi, You Hui-Lin, Jia Yan-Min. Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials. Acta Physica Sinica, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [15] Zhou Yong, Li Chun-Jian, Pan Yu-Rong. Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites. Acta Physica Sinica, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [16] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [17] Zhang Tian-Le, Huang Xi, Zheng Kai, Zhang Xin-Wu, Wang Yu-Jie, Wu Li-Ming, Zhang Xiao-Qing, Zheng Jie, Zhu Biao. Influence of polarization voltage on piezoelectric performance of polypropylene piezoelectret films. Acta Physica Sinica, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [18] Zhang Xin-Wu, Zhang Xiao-Qing. Piezoelectric and acoustic behavior of polypropylene piezoelectret films. Acta Physica Sinica, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [19] Xu Guo-Cheng, Pan Ling, Guan Qing-Feng, Zou Guang-Tian. Crystallization of amorphous bismuth titanate. Acta Physica Sinica, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [20] Chen Gang-Jin, Xia Zhong-Fu. Study on piezoelectricity of hybrid films consisting of porous PTFE and Teflon FEP. Acta Physica Sinica, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
Metrics
  • Abstract views:  24133
  • PDF Downloads:  1548
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2020
  • Accepted Date:  30 July 2020
  • Available Online:  02 November 2020
  • Published Online:  05 November 2020

/

返回文章
返回