Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of novel properties in several van der Waals ferroelectric materials

Jin Xin Tao Lei Zhang Yu-Yang Pan Jin-Bo Du Shi-Xuan

Citation:

Research progress of novel properties in several van der Waals ferroelectric materials

Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan
PDF
HTML
Get Citation
  • Ferroelectric (FE) materials possess electrically switchable spontaneous polarizations, showing broad applications in various functional devices. For the miniaturization of electronic devices, two-dimensional (2D) van der Waals (vdW) ferroelectric materials and the corresponding bulk counterparts have aroused more interest of researchers. Recently, several kinds of 2D vdW ferroelectrics have been fabricated in experiment. These 2D vdW FEs, as well as their bulk counterparts, exhibit novel properties as demonstrated in experiment or predicted in theory. This paper is to review the recent progress of novel properties of several vdW ferroelectrics. In Section II, we introduce the unusual ferroelectric property—a uniaxial quadruple potential well for Cu displacements—enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The electric field drives the Cu atoms to unidirectionally cross the vdW gaps, which is distinctively different from dipole reorientation, resulting in an unusual phenomenon that the polarization of CuInP2S6 aligns against the direction of the applied electric field. The potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and making CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. In Section III, we introduce the distinct geometric evolution mechanism of the newly reported M2Ge2Y6 (M = metal, X = Si, Ge, Sn, Y = S, Sn, Te) monolayers and a high throughput screening of 2D ferroelectric candidates based on this mechanism. The ferroelectricity of M2Ge2Y6 originates from the vertical displacement of Ge-dimer in the same direction driven by a soft phonon mode of the centrosymmetric configuration. Another centrosymmetric configuration is also dynamically stable but higher in energy than the ferroelectric phase. The metastable centrosymmetric phase of M2Ge2Y6 monolayers allows a new two-step ferroelectric switching path and may induce novel domain behaviors. In Section IV, a new concept about constructing 2D ferroelectric QL-M2O3/graphene heterostructure to realize monolayer-based FE tunnel junctions or potentially graphene p-n junctions is reviewed. These findings provide new perspectives of the integration of graphene with monolayer FEs, as well as related functional devices. Finally, the challenge and prospect of vdW ferroelectrics are discussed, providing some perspective for the field of ferroelectrics.
      Corresponding author: Pan Jin-Bo, jbpan@iphy.ac.cn ; Du Shi-Xuan, sxdu@iphy.ac.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 61888102), the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800), and the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB30000000).
    [1]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [2]

    Kim J Y, Choi M J, Jang H W 2021 APL Mater. 9 021102Google Scholar

    [3]

    Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087

    [4]

    Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B 2016 Adv. Mater. 28 5153Google Scholar

    [5]

    Cui C, Xue F, Hu W J, Li L J 2018 npj 2D Mater. Appl. 2 18Google Scholar

    [6]

    Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J, Duan C 2020 Adv. Electron. Mater. 6 1900818Google Scholar

    [7]

    Qi L, Ruan S, Zeng Y J 2021 Adv. Mater. 33 2005098Google Scholar

    [8]

    Wu M 2021 ACS Nano 15 9229Google Scholar

    [9]

    Xue F, He J H, Zhang X 2021 Appl. Phys. Rev. 8 021316Google Scholar

    [10]

    Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 372 1458Google Scholar

    [11]

    Vizner Stern M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, Ben Shalom M 2021 Science 372 1462Google Scholar

    [12]

    Li L, Wu M 2017 ACS Nano 11 6382Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Liang Y, Shen S, Huang B, Dai Y, Ma Y 2021 Mater. Horiz. 8 1683Google Scholar

    [15]

    Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal Evgeny Y, Hamilton Alex R, Seidel J 2019 Sci. Adv. 5 eaax5080Google Scholar

    [16]

    Brehm J A, Neumayer S M, Tao L, O'Hara A, Chyasnavichus M, Susner M A, McGuire M A, Kalinin S V, Jesse S, Ganesh P, Pantelides S T, Maksymovych P, Balke N 2020 Nat. Mater. 19 43Google Scholar

    [17]

    Neumayer S M, Tao L, O'Hara A, Brehm J, Si M, Liao P Y, Feng T, Kalinin S V, Ye P D, Pantelides S T, Maksymovych P, Balke N 2020 Phys. Rev. Appl. 13 064063Google Scholar

    [18]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [19]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [20]

    Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [21]

    Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P, Zhang X 2018 Phys. Rev. Lett. 120 227601Google Scholar

    [22]

    Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M, Hao J 2019 Nat. Commun. 10 1775Google Scholar

    [23]

    Wu J, Chen H Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [24]

    Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [25]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [26]

    Neumayer S M, Eliseev E A, Susner M A, Tselev A, Rodriguez B J, Brehm J A, Pantelides S T, Panchapakesan G, Jesse S, Kalinin S V, McGuire M A, Morozovska A N, Maksymovych P, Balke N 2019 Phys. Rev. Mater. 3 024401Google Scholar

    [27]

    You L, Zhang Y, Zhou S, Chaturvedi A, Morris Samuel A, Liu F, Chang L, Ichinose D, Funakubo H, Hu W, Wu T, Liu Z, Dong S, Wang J 2019 Sci. Adv. 5 eaav3780Google Scholar

    [28]

    Neumayer S M, Tao L, O'Hara A, Susner M A, McGuire M A, Maksymovych P, Pantelides S T, Balke N 2020 Adv. Energy Mater. 10 2001726Google Scholar

    [29]

    Habbal F, Zvirgzds J A, Scott J F 1978 J. Chem. Phys. 69 4984Google Scholar

    [30]

    Baranov A I, Khiznichenko V P, Shuvalov L A 1989 Ferroelectrics 100 135Google Scholar

    [31]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427Google Scholar

    [32]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [33]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [34]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290Google Scholar

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [36]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [37]

    Liu C, Wan W, Ma J, Guo W, Yao Y 2018 Nanoscale 10 7984Google Scholar

    [38]

    Shen S, Liu C, Ma Y, Huang B, Dai Y 2019 Nanoscale 11 11864Google Scholar

    [39]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415Google Scholar

    [40]

    Jin X, Tao L, Zhang Y Y, Pan J, Du S 2021 Nano Res.

    [41]

    Yu Z, Xia W, Xu K, Xu M, Wang H, Wang X, Yu N, Zou Z, Zhao J, Wang L, Miao X, Guo Y 2019 J. Phys. Chem. C 123 13885Google Scholar

    [42]

    Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M, Guo Y 2020 J. Alloys Compd. 819 153368Google Scholar

    [43]

    Shuang Y, Hatayama S, Tanimura H, Ando D, Ichitsubo T, Sutou Y 2020 Mater. Adv. 1 2426Google Scholar

    [44]

    Hao K R, Ma X Y, Lyu H Y, Zhu Z G, Yan Q B, Su G 2021 Nano Res. 14 4732Google Scholar

    [45]

    Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343Google Scholar

    [46]

    Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P 2012 Nano Lett. 12 4503Google Scholar

    [47]

    Guo H, Wang X, Huang L, Jin X, Yang Z, Zhou Z, Hu H, Zhang Y Y, Lu H, Zhang Q, Shen C, Lin X, Gu L, Dai Q, Bao L, Du S, Hofer W, Pantelides S T, Gao H J 2020 Nano Lett. 20 8584Google Scholar

    [48]

    Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [49]

    Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101Google Scholar

    [50]

    Omiciuolo L, Hernández E R, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş T O, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A 2014 Nat. Commun. 5 5062Google Scholar

    [51]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing Joan M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [52]

    Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [53]

    Lin L, Liao L, Yin J, Peng H, Liu Z 2015 Nano Today 10 701Google Scholar

    [54]

    Wang G, Zhang M, Chen D, Guo Q, Feng X, Niu T, Liu X, Li A, Lai J, Sun D, Liao Z, Wang Y, Chu P K, Ding G, Xie X, Di Z, Wang X 2018 Nat. Commun. 9 5168Google Scholar

    [55]

    Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E, Wang Y 2020 Phys. Rev. Lett. 124 067602Google Scholar

    [56]

    Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar

    [57]

    Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I, Dong S 2018 J. Am. Chem. Soc. 140 9768Google Scholar

    [58]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [59]

    Li C K, Yao X P, Chen G 2021 Phys. Rev. Res. 3 L012026Google Scholar

    [60]

    Sun W, Wang W, Li H, Zhang G, Chen D, Wang J, Cheng Z 2020 Nat. Commun. 11 5930Google Scholar

    [61]

    Shen X W, Tong W Y, Gong S J, Duan C G 2017 2D Mater. 5 011001Google Scholar

    [62]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063Google Scholar

    [63]

    Picozzi S 2014 Front. Phys. 2 10

    [64]

    Chen J, Wu K, Hu W, Yang J 2021 J. Phys. Chem. Lett. 12 12256Google Scholar

    [65]

    Zhang J J, Zhu D, Yakobson B I 2021 Nano Lett. 21 785Google Scholar

    [66]

    Liang Y, Mao N, Dai Y, Kou L, Huang B, Ma Y 2021 npj Comput. Mater. 7 172Google Scholar

    [67]

    Tang X, Shang J, Gu Y, Du A, Kou L 2020 J. Mater. Chem. A 8 7331Google Scholar

    [68]

    Kim H S 2021 J. Mater. Chem. A 9 11553Google Scholar

    [69]

    Ju L, Tan X, Mao X, Gu Y, Smith S, Du A, Chen Z, Chen C, Kou L 2021 Nat. Commun. 12 5128Google Scholar

  • 图 1  (a), (b) 弛豫后的体相CuInP2S6的晶体结构, CuInP2S6分别处于$ + $LP和$ + $HP态, 对应其能量-极化曲线右侧第1个和第2个局域能量极小值; (c), (d) 体相CuInP2S6的能量随极化变化的曲线, (c) CuInP2S6晶格常数c取其平衡晶格常数13.09 Å, (d) CuInP2S6晶格常数c分别取13.62, 13.35, 12.83和12.57 Å[16]

    Figure 1.  (a), (b) Relaxed atomic configurations of bulk CuInP2S6 in $ + $LP and $ + $HP states, respectively, corresponding to the first and second local energy minimum in energy-polarization curve; (c), (d) energy of bulk CuInP2S6 as a function of its polarization, in which the lattice parameter c is equilibrium lattice constant 13.09 Å (c) and 13.62, 13.35, 12.83 and 12.57 Å (d), respectively[16].

    图 2  (a), (b) CuInP2S6 $ + $HP态、$ + $LP态极化随应力的变化曲线; (c) CuInP2S6的定量压电系数图; (d) 图(c)中CuInP2S6压电系数的直方图统计, 其中4个极大值通过高斯函数进行拟合, 图中虚线为理论计算所得的压电系数[16].

    Figure 2.  (a), (b) Polarization as a function of stress for $ + $HP and $ + $LP state of CuInP2S6, respectively. (c) Quantified piezoelectric constant map of CuInP2S6. (d) histogram of piezoelectric constant extracted from (c), where the four distinct maxima are fitted by Gaussian function. The dashed lines denote the calculated piezoelectric constant of CuInP2S6[16].

    图 3  (a) 实验上观察到的CuInP2S6的一条铁电翻转路径中, 极化随脉冲持续时间的变化曲线; (b) 图(a)中所示的翻转路径中, Cu原子相对位移随脉冲持续时间的变化曲线; (c) 图(a)所对应的翻转路径示意图; (d) 含有过量Cu原子的CuInP2S6在外电场下, 其中两层的Cu原子的演化轨迹[17]

    Figure 3.  (a) Polarization as a function of pulse duration time for one of the experimentally observed switching paths of CuInP2S6; (b) Cu relative displacement of as a function of pulse duration time for the switching paths in (a); (c) schematics of the switching path in (a); (d) evolution trajectory of Cu atoms in two individual layers for CuInP2S6 with excess Cu under external electric field[17]

    图 4  目前已知的几类典型的二维铁电材料[18,19,22,34,36-38]. “exp”代表该类材料已在实验上制备, “th”代表该类材料为理论预测结果. 箭头表示铁电极化方向

    Figure 4.  Several typical known two-dimensional ferroelectric materials[18,19,22,34,36-38]. “exp” and “th” denote that the corresponding materials are experimentally fabricated and theoretically predicted, respectively. Arrows represent the directions of ferroelectric polarizations.

    图 5  (a) 单层M2X2Y6中通过X-dimer位移打破中心对称性的示意图; (b)—(d) 单层M2X2Y6的高通量初筛结果. 对于被标识的金属原子M, 红色圆点表示初筛后所有的M2X2Y6均保持铁电结构, 红色圆圈表示初筛后部分M2X2Y6 (一种或两种)保持铁电结构, 蓝色圆圈表示初筛后M2X2Y6结构为扭曲极化结构[40]

    Figure 5.  (a) Schematic for the centrosymmetry breaking in M2X2Y6 monolayer through X-dimer displacement; (b)–(d) primary high-throughput screening results for M2X2Y6 monolayers. For the marked metal atom M, red dot represents that the M2X2Y6 monolayers show ferroelectric structure after primary screening, red circle represents that one or two of the M2X2Y6 monolayers show ferroelectric structure after primary screening, blue circle represents that the M2X2Y6 monolayers show distorted polar structure after primary screening[40].

    图 6  (a)—(c) 中心对称-I相、铁电相、中心对称-II相的单层Hf2Ge2Te6的原子结构侧视图; (d)—(f) 中心对称-I相、铁电相、中心对称-II相的单层Hf2Ge2Te6的声子谱; (g)—(i) 图(d)和(e)中标记点处的声子振动模式, 以及铁电相和中心对称-II相结构形成示意图, 图中红色箭头所示为Ge原子的振动方向[40]

    Figure 6.  (a)–(c) Side views of the atomic configurations of Hf2Ge2Te6 monolayer in centrosymmetric-I, ferroelectric and centrosymmetric-II phases, respectively; (d)–(f) phonon dispersions of Hf2Ge2Te6 monolayer in centrosymmetric-I, ferroelectric and centrosymmetric-II phases, respectively; (g)–(i) schematic of vibration modes at the marked points in panel (d) and (e), and the formation of the ferroelectric and centrosymmetric-II Hf2Ge2Te6 monolayers, where the red arrows represent the vibration direction of Ge atoms[40]

    图 7  (a), (c) 单层铁电Hf2Ge2Y6 (Y = S, Se, Te)两种可能的铁电翻转路径的势垒; (b), (d) 两种可能的铁电翻转路径的示意图; (e)单层铁电Hf2Ge2Y6从均匀极化向上态↑↑↑↑翻转为均匀极化向下态↓↓↓↓过程的翻转势垒, 图中每个势垒对应一个原胞内的极化翻转, 红色和黑色箭头代表每个原胞内的极化方向; (f)基于单层铁电Hf2Ge2Y6的高密度存储器件示意图[40]

    Figure 7.  (a), (c) Ferroelectric switching barriers of the two possible switching paths of ferroelectric monolayers Hf2Ge2Y6 (Y = S, Se, Te). (b), (d) Schematics of the two possible switching paths. (e) Ferroelectric switching barriers of Hf2Ge2Y6 monolayers from a uniformed polarization up state ↑↑↑↑ to a polarization down state ↓↓↓↓, in which each barrier corresponds to polarization switching in one unit cell. The red and black arrows represent the polarization direction in each unit cell. (f) Schematic of the high-density storage device based on ferroelectric monolayer Hf2Ge2Y6[40].

    图 8  (a)—(c) 弛豫后的石墨烯/QL-In2Se3/Ru、石墨烯/QL-Al2O3/Ru异质结的原子构型, (b), (c)中QL-Al2O3的极化方向分别指向和远离石墨烯; (d)—(f) 图(a)—(c)所示构型的面平均静电势[23]

    Figure 8.  (a)–(c) Relaxed atomic configurations of graphene/QL-In2Se3/Ru and graphene/QL-M2O3/Ru heterostructure. The polarization of QL-Al2O3 in (b) and (c) points to and away from graphene, respectively. (d)–(f) Plane-averaged electrostatic potential (ESP) of (a)–(c), respectively[23].

    图 9  (a), (b) 石墨烯/QL-Al2O3/Ru异质结原子层分辨的投影电子态密度及对应的能带示意图, (a), (b)异质结中QL-Al2O3极化分别指向和远离石墨烯; (c) 基于石墨烯/QL-M2O3 (M = Al, Y)/Ru异质结的功能器件示意图[23]

    Figure 9.  (a), (b) Layer-resolved projected density of states and corresponding band diagram of graphene/QL-Al2O3/Ru heterostructure when polarization points to (a) and away from (b) graphene; (c) schematics of functional devices based on graphene/QL-M2O3 (M = Al, Y)/Ru heterostructure[23].

  • [1]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [2]

    Kim J Y, Choi M J, Jang H W 2021 APL Mater. 9 021102Google Scholar

    [3]

    Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087

    [4]

    Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B 2016 Adv. Mater. 28 5153Google Scholar

    [5]

    Cui C, Xue F, Hu W J, Li L J 2018 npj 2D Mater. Appl. 2 18Google Scholar

    [6]

    Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J, Duan C 2020 Adv. Electron. Mater. 6 1900818Google Scholar

    [7]

    Qi L, Ruan S, Zeng Y J 2021 Adv. Mater. 33 2005098Google Scholar

    [8]

    Wu M 2021 ACS Nano 15 9229Google Scholar

    [9]

    Xue F, He J H, Zhang X 2021 Appl. Phys. Rev. 8 021316Google Scholar

    [10]

    Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 372 1458Google Scholar

    [11]

    Vizner Stern M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, Ben Shalom M 2021 Science 372 1462Google Scholar

    [12]

    Li L, Wu M 2017 ACS Nano 11 6382Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Liang Y, Shen S, Huang B, Dai Y, Ma Y 2021 Mater. Horiz. 8 1683Google Scholar

    [15]

    Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal Evgeny Y, Hamilton Alex R, Seidel J 2019 Sci. Adv. 5 eaax5080Google Scholar

    [16]

    Brehm J A, Neumayer S M, Tao L, O'Hara A, Chyasnavichus M, Susner M A, McGuire M A, Kalinin S V, Jesse S, Ganesh P, Pantelides S T, Maksymovych P, Balke N 2020 Nat. Mater. 19 43Google Scholar

    [17]

    Neumayer S M, Tao L, O'Hara A, Brehm J, Si M, Liao P Y, Feng T, Kalinin S V, Ye P D, Pantelides S T, Maksymovych P, Balke N 2020 Phys. Rev. Appl. 13 064063Google Scholar

    [18]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [19]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [20]

    Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [21]

    Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P, Zhang X 2018 Phys. Rev. Lett. 120 227601Google Scholar

    [22]

    Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M, Hao J 2019 Nat. Commun. 10 1775Google Scholar

    [23]

    Wu J, Chen H Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [24]

    Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [25]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [26]

    Neumayer S M, Eliseev E A, Susner M A, Tselev A, Rodriguez B J, Brehm J A, Pantelides S T, Panchapakesan G, Jesse S, Kalinin S V, McGuire M A, Morozovska A N, Maksymovych P, Balke N 2019 Phys. Rev. Mater. 3 024401Google Scholar

    [27]

    You L, Zhang Y, Zhou S, Chaturvedi A, Morris Samuel A, Liu F, Chang L, Ichinose D, Funakubo H, Hu W, Wu T, Liu Z, Dong S, Wang J 2019 Sci. Adv. 5 eaav3780Google Scholar

    [28]

    Neumayer S M, Tao L, O'Hara A, Susner M A, McGuire M A, Maksymovych P, Pantelides S T, Balke N 2020 Adv. Energy Mater. 10 2001726Google Scholar

    [29]

    Habbal F, Zvirgzds J A, Scott J F 1978 J. Chem. Phys. 69 4984Google Scholar

    [30]

    Baranov A I, Khiznichenko V P, Shuvalov L A 1989 Ferroelectrics 100 135Google Scholar

    [31]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427Google Scholar

    [32]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [33]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [34]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290Google Scholar

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [36]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [37]

    Liu C, Wan W, Ma J, Guo W, Yao Y 2018 Nanoscale 10 7984Google Scholar

    [38]

    Shen S, Liu C, Ma Y, Huang B, Dai Y 2019 Nanoscale 11 11864Google Scholar

    [39]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415Google Scholar

    [40]

    Jin X, Tao L, Zhang Y Y, Pan J, Du S 2021 Nano Res.

    [41]

    Yu Z, Xia W, Xu K, Xu M, Wang H, Wang X, Yu N, Zou Z, Zhao J, Wang L, Miao X, Guo Y 2019 J. Phys. Chem. C 123 13885Google Scholar

    [42]

    Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M, Guo Y 2020 J. Alloys Compd. 819 153368Google Scholar

    [43]

    Shuang Y, Hatayama S, Tanimura H, Ando D, Ichitsubo T, Sutou Y 2020 Mater. Adv. 1 2426Google Scholar

    [44]

    Hao K R, Ma X Y, Lyu H Y, Zhu Z G, Yan Q B, Su G 2021 Nano Res. 14 4732Google Scholar

    [45]

    Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343Google Scholar

    [46]

    Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P 2012 Nano Lett. 12 4503Google Scholar

    [47]

    Guo H, Wang X, Huang L, Jin X, Yang Z, Zhou Z, Hu H, Zhang Y Y, Lu H, Zhang Q, Shen C, Lin X, Gu L, Dai Q, Bao L, Du S, Hofer W, Pantelides S T, Gao H J 2020 Nano Lett. 20 8584Google Scholar

    [48]

    Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [49]

    Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101Google Scholar

    [50]

    Omiciuolo L, Hernández E R, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş T O, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A 2014 Nat. Commun. 5 5062Google Scholar

    [51]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing Joan M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [52]

    Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [53]

    Lin L, Liao L, Yin J, Peng H, Liu Z 2015 Nano Today 10 701Google Scholar

    [54]

    Wang G, Zhang M, Chen D, Guo Q, Feng X, Niu T, Liu X, Li A, Lai J, Sun D, Liao Z, Wang Y, Chu P K, Ding G, Xie X, Di Z, Wang X 2018 Nat. Commun. 9 5168Google Scholar

    [55]

    Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E, Wang Y 2020 Phys. Rev. Lett. 124 067602Google Scholar

    [56]

    Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar

    [57]

    Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I, Dong S 2018 J. Am. Chem. Soc. 140 9768Google Scholar

    [58]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [59]

    Li C K, Yao X P, Chen G 2021 Phys. Rev. Res. 3 L012026Google Scholar

    [60]

    Sun W, Wang W, Li H, Zhang G, Chen D, Wang J, Cheng Z 2020 Nat. Commun. 11 5930Google Scholar

    [61]

    Shen X W, Tong W Y, Gong S J, Duan C G 2017 2D Mater. 5 011001Google Scholar

    [62]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063Google Scholar

    [63]

    Picozzi S 2014 Front. Phys. 2 10

    [64]

    Chen J, Wu K, Hu W, Yang J 2021 J. Phys. Chem. Lett. 12 12256Google Scholar

    [65]

    Zhang J J, Zhu D, Yakobson B I 2021 Nano Lett. 21 785Google Scholar

    [66]

    Liang Y, Mao N, Dai Y, Kou L, Huang B, Ma Y 2021 npj Comput. Mater. 7 172Google Scholar

    [67]

    Tang X, Shang J, Gu Y, Du A, Kou L 2020 J. Mater. Chem. A 8 7331Google Scholar

    [68]

    Kim H S 2021 J. Mater. Chem. A 9 11553Google Scholar

    [69]

    Ju L, Tan X, Mao X, Gu Y, Smith S, Du A, Chen Z, Chen C, Kou L 2021 Nat. Commun. 12 5128Google Scholar

  • [1] Li Huan-Ya, Zhou Ke, Yin Wan-Jian. Quantitative descriptor of lattice anharmonicity in crystal. Acta Physica Sinica, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [11] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [12] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [13] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [14] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [15] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [16] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17] Hu Ting, Kan Er-Jun. Research progress of low-dimensional ferroelectric materials. Acta Physica Sinica, 2018, 67(15): 157701. doi: 10.7498/aps.67.20180483
    [18] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [19] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [20] Yuan Zhen-Kun, Xu Peng, Chen Shi-You. Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials. Acta Physica Sinica, 2015, 64(18): 186102. doi: 10.7498/aps.64.186102
Metrics
  • Abstract views:  7322
  • PDF Downloads:  582
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2022
  • Accepted Date:  24 March 2022
  • Available Online:  15 June 2022
  • Published Online:  20 June 2022

/

返回文章
返回