Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of magnetic Janus materials based on machine learning and first-principles calculations

Zhang Qiao Tan Wei Ning Yong-Qi Nie Guo-Zheng Cai Meng-Qiu Wang Jun-Nian Zhu Hui-Ping Zhao Yu-Qing

Citation:

Prediction of magnetic Janus materials based on machine learning and first-principles calculations

Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing
cstr: 32037.14.aps.73.20241278
PDF
HTML
Get Citation
  • Discovering compact, stable, and easily controllable nanoscale non-trivial topological magnetic structures, such as magnetic skyrmions, is the key to developing next-generation high-density, high-speed, and low-energy non-volatile information storage devices. Based on the topological generation mechanism, magnetic skyrmions can be generated through the Dzyaloshinskii–Moriya interaction (DMI) caused by breaking space-reversal symmetry. Two-dimensional (2D) non-centrosymmetric Janus structurecan generate vertical built-in electric fields to break spatial inversion symmetry. Therefore, seeking for 2D Janus material with intrinsic magnetism is fundamental to develop the novel chiral magnetic storage technologies. In this work, we combine detailed machine learning techniques and first-principle calculations to investigate the magnetism of the unexplored 2D Janus material. We first collect 1179 2D hexagonal ABC-type Janus materials based on the Materials Project database, and use elemental composition as feature descriptors to construct four machine learning models: random forest (RF), gradient boosting decision trees (GBDT), extreme gradient boosting (XGB), and extra trees (ET). These algorithms and models are constructed to predict lattice constants, formation energy, and magnetic moment, via hyperparameter optimization and ten-fold cross-validation. The GBDT exhibits the highest accuracy and best prediction performance for magnetic moment classification. Subsequently, the collected data of 82018 yet-undiscovered 2D Janus materials, are input into the trained models to generate 4024 high magnetic moment 2D Janus materials with thermal stability. First-principles calculations are employed to validate random sample of 13 Janus materials with high magnetic moment. This study provides an effective machine learning framework for classifying the magnetic moments and screening highthroughput 2D Janus structures, thereby accelerating the exploration of their magnetic properties.
      Corresponding author: Zhao Yu-Qing, yqzhao@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204166), the Natural Science Foundation of Hunan Province, China (Grant No. 2024JJ5132), and the Scientific Research Start-up Fund of Hunan University of Science and Technology, China (Grant No. E51996).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Z W, Lang Y F, Zhu H P, Li B, Zhao Y Q, Wei B, Zhou W X 2024 Phys. Rev. Appl. 21 064012Google Scholar

    [3]

    Liu B, Feng X X, Long M Q, Cai M Q, Yang J L 2022 Phys. Rev. Appl. 18 054036Google Scholar

    [4]

    熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙 2024 物理学报 73 137101Google Scholar

    Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101Google Scholar

    [5]

    Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104Google Scholar

    [6]

    Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang Y S 2024 Appl. Phys. Lett. 124 052903Google Scholar

    [7]

    Liao C S, Ding Y F, Zhao Y Q, Cai M Q 2021 Appl. Phys. Lett. 119 182903Google Scholar

    [8]

    Tan W, Zhang Z W, Zhou X Y, Yu Z L, Zhao Y Q, Jiang S L, Ang Y S 2024 Phys. Rev. Mater. 8 094414Google Scholar

    [9]

    Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A, Yang H X 2020 Phys. Rev. B 101 184401Google Scholar

    [10]

    Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398Google Scholar

    [11]

    Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859Google Scholar

    [12]

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801 [王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣 2021 物理学报 70 026801]Google Scholar

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [13]

    Ren K, Wang K, Zhang G 2022 ACS Appl. Electron. Mater. 4 4507Google Scholar

    [14]

    Peng Z L, Huang J X, Guo Z G 2021 Nanoscale 13 18839Google Scholar

    [15]

    Zhang L, Yang Z J F, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H, Fu X 2020 J. Mater. Chem. A 8 8813Google Scholar

    [16]

    Vafaeezadeh M, Thiel W R 2022 Angew. Chem. Int. Edit. 61 e202206403Google Scholar

    [17]

    Mukherjee T, Kar S, Ray S 2022 J. Mater. Res. 37 3418Google Scholar

    [18]

    Li C Q, An Y K 2022 Phys. Rev. B 106 115417Google Scholar

    [19]

    Zhang L, Zhao Y, Liu Y Q, Gao G Y 2023 Nanoscale 15 18910Google Scholar

    [20]

    Xu L J, Wan W H, Peng Y R, Ge Y F, Liu Y 2024 Ann. Phys. 536 2300388Google Scholar

    [21]

    Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460Google Scholar

    [22]

    Liu H, Sun J T, Liu M, Meng S 2018 J. Phys. Chem. Lett. 9 6709Google Scholar

    [23]

    Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405Google Scholar

    [24]

    Belot J F, Taufour V, Sanvito S, Hart G L 2023 Appl. Phys. Lett. 123 042405Google Scholar

    [25]

    Miyazato I, Tanaka Y, Takahashi K 2018 J. Phys.: Condens. Matter 30 06L

    [26]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar

    [27]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X F, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [28]

    Huang T, Yang Z X, Li L, Wan H, Leng C, Huang G F, Hu W Y, Huang W Q 2024 J. Phys. chem. Lett. 15 2428Google Scholar

    [29]

    Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C 2021 ACS Appl. Mater. Interfaces 13 36388Google Scholar

    [30]

    Yan X H, Zheng J M, Zhao X, Zhao P J, Guo P, Jiang Z Y 2024 Phys. Status Solidi Rapid Res. Lett. 18 2300468Google Scholar

    [31]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [32]

    Chen P Y, Lam C H, Edmondson B, Posadas A B, Demkov A A, Ekerdt J G 2019 J. Vac. Sci. Technol. A 37 050902Google Scholar

    [33]

    Khushi M, Shaukat K, Alam T M, Hameed I A, Uddin S, Luo S, Yang X, Reyes M C 2021 IEEE Access 9 109960Google Scholar

    [34]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comp. Mater. Sci. 152 60Google Scholar

    [35]

    Chen J, Song Y Y, Li S Z, Que Z X, Zhang W B 2023 Sci. China Technol. Sci. 1 011002

    [36]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825

    [37]

    Ester M, Kriegel H P, Xu X 2023 Geogr. Anal. 55 207Google Scholar

    [38]

    Wu J, Chen X Y, Zhang H, Xiong L D, Lei H, Deng S H 2019 J. Electron. Sci. Technol. 17 26

    [39]

    Ma Q Y, Wan W H, Ge Y F, Li Y M, Liu Y 2022 J. Magn. Magn. Mater. 605 172314

    [40]

    Yin W J, Tan H J, Ding P J, Wen B, Li X B, Teobaldi G, Liu L M 2021 Mater. Adv. 2 7543Google Scholar

  • 图 1  机器学习结合基于密度泛函理论(DFT)发掘高磁矩Janus材料步骤

    Figure 1.  Steps for discovering high magnetic moment Janus materials by combining machine learning with density fun-ctional theory (DFT).

    图 2  六角晶系ABC型Janus材料原子结构的(a)侧视图和(b)俯视图

    Figure 2.  (a) Side view and (b) top view of atomic structures of hexagonal ABC-type Janus materials.

    图 3  数据集中二维 Janus 材料的(a)晶格常数 ab, (b)晶格常数 c, (c)形成能和(d)总磁矩的分布

    Figure 3.  The distribution of (a) lattice constants a and b, (b) lattice constant c, (c) formation energy and (d) total magnetic moment of the dataset of 2D Janus materials.

    图 4  晶格常数预测: 最优模型在十折交叉验证中的散点图 (a) Lattice a = b预测任务最优模型: 极端随机树; (b) Lattice c预测任务最优模型: 极端梯度提升

    Figure 4.  Prediction of lattice constants: scatter plots for the optimal models in ten-fold cross-validation: (a) The optimal model for the lattice a = b prediction task: ET; (b) the optimal model for the lattice c prediction task: XGB.

    图 5  形成能预测: 四种模型在十折交叉验证上的散点图 (a)随机森林; (b)梯度提升决策树; (c)极端梯度提升; (d)极端随机树

    Figure 5.  Prediction of formation energy: Scatter plots for four models in ten-fold cross-validation: (a) RF; (b) GBDT; (c) XGB; (d) ET

    图 6  磁矩分类预测: 四种模型在十折交叉验证上的混淆矩阵 (a)随机森林; (b)梯度提升决策树; (c)极端梯度提升; (d)极端随机树

    Figure 6.  Prediction of magnetic moment classification: Confusion matrices for four models in ten-fold cross-validation: (a) RF; (b) GBDT; (c) XGB; (d) ET.

    图 7  13种二维六角晶系Janus原子结构的侧视图

    Figure 7.  Side view of atomic structures of 13 two-dimensional hexagonal Janus materials.

    表 1  不同训练任务中机器学习最优模型的超参数

    Table 1.  The hyperparameters of the optimal machine learning models in various training tasks.

    模型 超参数
    GBDT(磁矩分类) learning_rate = 0.01603011, max_depth = 5, n_estimators = 272, subsample = 0.69895067
    GBDT(形成能) learning_rate = 0.02, max_depth = 6, n_estimators = 353, subsample = 0.93030056
    ET(晶格常数ab) max_depth = 10, max_features = 0.60, n_estimators = 100,
    min_samples_leaf = 2, min_samples_split = 4
    XGB(晶格常数c) learning_rate = 0.02, n_estimators = 300, max_depth = 5,
    subsample = 0.8, colsample_bytree = 0.49613519
    DownLoad: CSV

    表 2  晶格常数预测

    Table 2.  Prediction of lattice constants.

    模型 Lattice a = b Lattice c
    MAE RMSE $R^2$ MAE RMSE $R^2$
    RF 0.5485 0.8104 0.7375 0.6491 1.0001 0.6872
    GBDT 0.4477 0.7350 0.7829 0.6679 0.9924 0.6923
    XGB 0.5427 0.7968 0.7462 0.5953 0.9474 0.7186
    ET 0.3469 0.6808 0.8137 0.6534 1.0103 0.6817
    DownLoad: CSV

    表 3  形成能预测: 四种机器学习模型的评价指标

    Table 3.  The prediction of formation energy: Evaluation metrics of four machine learning models.

    模型MAERMSE$R^2$
    RF0.10540.16970.8671
    GBDT0.07980.14110.9070
    XGB0.09590.15330.8930
    ET0.11200.17010.8657
    DownLoad: CSV

    表 4  磁矩分类预测: 四种机器学习模型的评价指标

    Table 4.  Prediction of magnetic moment classification: Evaluation metrics of four machine learning models.

    模型AccuracyPrecisionRecallF1 score
    RF0.87700.84590.76360.7862
    GBDT0.89480.84980.81820.8263
    XGB0.87620.83980.76970.7883
    ET0.87950.83920.77780.7965
    DownLoad: CSV

    表 5  13种结构优化后的六角晶系ABC型Janus材料的晶格常数、形成能和磁矩

    Table 5.  Optimized lattice constants, formation energies, and magnetic moments of 13 two-dimensional hexagonal ABC-type Janus materials.

    Formula Lattice constants Formation energy/eV $ |\mu| / \mu_{\mathrm{B}} $
    a = b c A B C
    ErFeTb 3.35 18.25 –2.02 2.51 3.03 6.24
    FeNO 2.92 15.00 –11.87 1.17 0.08 0.47
    HoRuSr 4.90 18.79 –6.66 3.79 0.02 0.05
    DyOsSr 4.18 18.87 –6.89 4.89 0 0.13
    EuSbSr 5.43 18.69 –5.53 6.85 0.01 0.05
    HoIrSr 4.58 18.79 –7.24 3.72 0 0.05
    LiUZn 2.89 18.13 –0.44 0 1.65 0.01
    PuSZn 4.52 18.13 –6.75 5.61 0.10 0.01
    GdKU 7.46 18.13 –2.39 7.33 0 2.96
    LuNbTi 3.02 18.13 –1.76 0.02 0.28 1.67
    GdHfSe 5.03 18.93 –8.46 7.33 0.34 0.02
    NaTbZn 4.65 18.69 –1.87 0.02 6.00 0
    HoNpSr 3.69 18.46 –1.80 3.81 4.38 0.08
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Z W, Lang Y F, Zhu H P, Li B, Zhao Y Q, Wei B, Zhou W X 2024 Phys. Rev. Appl. 21 064012Google Scholar

    [3]

    Liu B, Feng X X, Long M Q, Cai M Q, Yang J L 2022 Phys. Rev. Appl. 18 054036Google Scholar

    [4]

    熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙 2024 物理学报 73 137101Google Scholar

    Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101Google Scholar

    [5]

    Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104Google Scholar

    [6]

    Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang Y S 2024 Appl. Phys. Lett. 124 052903Google Scholar

    [7]

    Liao C S, Ding Y F, Zhao Y Q, Cai M Q 2021 Appl. Phys. Lett. 119 182903Google Scholar

    [8]

    Tan W, Zhang Z W, Zhou X Y, Yu Z L, Zhao Y Q, Jiang S L, Ang Y S 2024 Phys. Rev. Mater. 8 094414Google Scholar

    [9]

    Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A, Yang H X 2020 Phys. Rev. B 101 184401Google Scholar

    [10]

    Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398Google Scholar

    [11]

    Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859Google Scholar

    [12]

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801 [王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣 2021 物理学报 70 026801]Google Scholar

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [13]

    Ren K, Wang K, Zhang G 2022 ACS Appl. Electron. Mater. 4 4507Google Scholar

    [14]

    Peng Z L, Huang J X, Guo Z G 2021 Nanoscale 13 18839Google Scholar

    [15]

    Zhang L, Yang Z J F, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H, Fu X 2020 J. Mater. Chem. A 8 8813Google Scholar

    [16]

    Vafaeezadeh M, Thiel W R 2022 Angew. Chem. Int. Edit. 61 e202206403Google Scholar

    [17]

    Mukherjee T, Kar S, Ray S 2022 J. Mater. Res. 37 3418Google Scholar

    [18]

    Li C Q, An Y K 2022 Phys. Rev. B 106 115417Google Scholar

    [19]

    Zhang L, Zhao Y, Liu Y Q, Gao G Y 2023 Nanoscale 15 18910Google Scholar

    [20]

    Xu L J, Wan W H, Peng Y R, Ge Y F, Liu Y 2024 Ann. Phys. 536 2300388Google Scholar

    [21]

    Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460Google Scholar

    [22]

    Liu H, Sun J T, Liu M, Meng S 2018 J. Phys. Chem. Lett. 9 6709Google Scholar

    [23]

    Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405Google Scholar

    [24]

    Belot J F, Taufour V, Sanvito S, Hart G L 2023 Appl. Phys. Lett. 123 042405Google Scholar

    [25]

    Miyazato I, Tanaka Y, Takahashi K 2018 J. Phys.: Condens. Matter 30 06L

    [26]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar

    [27]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X F, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [28]

    Huang T, Yang Z X, Li L, Wan H, Leng C, Huang G F, Hu W Y, Huang W Q 2024 J. Phys. chem. Lett. 15 2428Google Scholar

    [29]

    Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C 2021 ACS Appl. Mater. Interfaces 13 36388Google Scholar

    [30]

    Yan X H, Zheng J M, Zhao X, Zhao P J, Guo P, Jiang Z Y 2024 Phys. Status Solidi Rapid Res. Lett. 18 2300468Google Scholar

    [31]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [32]

    Chen P Y, Lam C H, Edmondson B, Posadas A B, Demkov A A, Ekerdt J G 2019 J. Vac. Sci. Technol. A 37 050902Google Scholar

    [33]

    Khushi M, Shaukat K, Alam T M, Hameed I A, Uddin S, Luo S, Yang X, Reyes M C 2021 IEEE Access 9 109960Google Scholar

    [34]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comp. Mater. Sci. 152 60Google Scholar

    [35]

    Chen J, Song Y Y, Li S Z, Que Z X, Zhang W B 2023 Sci. China Technol. Sci. 1 011002

    [36]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825

    [37]

    Ester M, Kriegel H P, Xu X 2023 Geogr. Anal. 55 207Google Scholar

    [38]

    Wu J, Chen X Y, Zhang H, Xiong L D, Lei H, Deng S H 2019 J. Electron. Sci. Technol. 17 26

    [39]

    Ma Q Y, Wan W H, Ge Y F, Li Y M, Liu Y 2022 J. Magn. Magn. Mater. 605 172314

    [40]

    Yin W J, Tan H J, Ding P J, Wen B, Li X B, Teobaldi G, Liu L M 2021 Mater. Adv. 2 7543Google Scholar

  • [1] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [3] Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo. Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [4] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [5] Wan Xin-Yang, Zhang Ye-Hui, Lu Shuai-Hua, Wu Yi-Lei, Zhou Qiong-Hua, Wang Jin-Lan. Machine learning accelerated search for new double perovskite oxide photocatalysis. Acta Physica Sinica, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [6] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [7] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [8] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [9] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [10] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [11] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [12] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [13] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [14] Zhang Wei,  Chen Kai-Bin,  Chen Zhen-Dong. First-principles study on Jahn-Teller effect in Cr monolayer film. Acta Physica Sinica, 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [15] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Study on magnetic moment of cation-vacancy. Acta Physica Sinica, 2015, 64(17): 176101. doi: 10.7498/aps.64.176101
    [16] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [17] Li De-Jun, Mi Xian-Wu, Deng Ke. Energy levels and magnetic moments of the quantum solitary wave in a one-dimensional ferromagnetic chain. Acta Physica Sinica, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [18] Zhao Wen-Jie, Yang Zhi, Yan Yu-Li, Lei Xue-Ling, Ge Gui-Xian, Wang Qing-Lin, Luo You-Hua. Ground-state structures and magnetisms of GenFe(n=1—8) clusters: The density functional investigations. Acta Physica Sinica, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [19] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] Zhao Wen-Jie, Wang Qing-Lin, Ren Feng-Zhu, Luo You-Hua. First principles study of the ground-state structures and magnetism of Zrn Fe(n=2—13)clusters. Acta Physica Sinica, 2007, 56(10): 5746-5753. doi: 10.7498/aps.56.5746
  • supplement 23-20241278Suppl.pdf supplement
Metrics
  • Abstract views:  907
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2024
  • Accepted Date:  14 October 2024
  • Available Online:  29 October 2024
  • Published Online:  05 December 2024

/

返回文章
返回