Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Dilution refrigeration technology

Zheng Mao-Wen, Guo Hao-Wen, Wei Ling-Jiao, Pan Zi-Jie, Zou Jia-Run, Li Rui-Xin, Zhao Mi-Guang, Chen Hou-Lei, Liang Jing-Tao
PDF
HTML
Get Citation
  • Dilution refrigerator, as a refrigeration technology that can obtain extremely low temperatures below 10 mK, is widely used in fields such as quantum computing, and condensed matter physics. The development of the most widely used typical dry dilution refrigerators has been relatively mature, while there is little research on other types of dilution refrigerators, and there is a lack of comprehensive and systematic research on dilution refrigeration technology.This paper focuses on the current status of dilution refrigeration technology research, introduces its basic principles, and points out that the fundamental reason for continuous refrigeration is the limited solubility of 3He in 4He and the difference in enthalpy between the concentrated phase and the dilute phase. This paper summarizes the realization forms and research progress of typical dilution refrigerators, 4He cycle dilution refrigerators, cold cycle dilution refrigerators, and space dilution refrigerators, and discusses their respective application occasions and advantages and disadvantages. From the Kapitza thermal resistance, osmotic pressure, and resistance, this paper analyzes the key influencing factors and design calculation methods for realizing dilution refrigerators below 10 mK, which provides reference for studying dilution refrigeration technology.
  • 图 1  在绝对零度时3He在4He中的化学势平衡关系[11,12,21]

    Figure 1.  Chemical potential equilibrium relationship of 3He in 4He at absolute zero[11,12,21].

    图 2  3He-4He混合液相图[812]

    Figure 2.  The phase diagram of 3He-4He mixture[812].

    图 3  浓相、稀相分离示意图

    Figure 3.  Schematic diagram of separation of concentrated phase and diluted phase.

    图 4  浓相与稀相的焓值图[11]

    Figure 4.  The enthalpy diagram of the concentrated phase and diluted phase[11].

    图 5  稀释制冷循环流程

    Figure 5.  The cycle of dilution refrigerator.

    图 6  稀释制冷机结构图 (a) 湿式[30]; (b)干式[37]

    Figure 6.  The structure of DR: (a) The wet [30];(b) dry DR[37].

    图 7  冷循环稀释制冷机示意图

    Figure 7.  The schematic diagram of CDR.

    图 8  冷凝泵型稀释制冷机模型图(NASA Ames实验室)

    Figure 8.  Model diagram of condensate pump dilution refrigerator (NASA Ames).

    图 9  Leiden型(4He循环)稀释制冷机原理图[52]

    Figure 9.  Schematic diagram of Leiden type (4He cycle) dilution refrigerator[52].

    图 10  空间开式稀释制冷机原理图[58,59]

    Figure 10.  The schematic diagram of OCDR[58,59].

    图 11  空间闭式稀释制冷机[62]

    Figure 11.  The schematic diagram of CCDR[62].

    图 12  常温及极低温下的温度梯度 (a)常温下的换热器; (b)极低温下的换热器

    Figure 12.  Temperature gradient at normal temperature and extremely low temperature: (a) Normal temperature; (b) extremely low temperature.

    图 13  不同材料的Kapitza热阻值[19]

    Figure 13.  Kapitza thermal resistance of different materials[19].

    图 14  换热器结构示意图 (a) 螺旋套管换热器; (b) 纳米烧结银粉换热器

    Figure 14.  Schematic of the heat-exchanger: (a) Tube-in-tube; (b) sintered nano silver powder.

    图 15  极低温逆流换热器计算模型图[71]

    Figure 15.  Calculation model diagram of extremely low temperature counter-flow heat exchanger[71].

    图 16  一种采用加热丝抑制超流氦爬膜的蒸发器结构[11]

    Figure 16.  The still structure using heating wires to restrain superfluid helium from climbing the film[11].

    图 17  稀释单元稀相管路内的渗透压平衡关系图

    Figure 17.  Osmotic pressure balance diagram in dilute phase pipeline of dilution unit.

    图 18  文献[11,28,73]中给出的渗透压数值

    Figure 18.  Osmotic pressure values given in Ref. [11,28,73].

    表 1  国外主流商用稀释制冷机产品

    Table 1.  The foreign mainstream commercial dilution refrigerator products.

    公司稀释制冷机型号最低温度/mK制冷功率
    BlueforsBF- LD25010250 μW@100 mK
    10 μW@20 mK
    BF-XLD40010400 μW@100 mK
    15 μW@20 mK
    BF-XLD1000101000 μW@100 mK
    30 μW@20 mK
    KIDE103 mW@100 mK(3个模块)
    OxfordProteox MX10450 μW@100 mK
    12 μW@20 mK
    Proteox LX7850 μW@100 mK
    25 μW@20 mK
    Proteox 5 mK5850 μW@100 mK
    25 μW@20 mK
    JanisJDry-50010400 μW@100 mK
    JDry-7509400 μW@100 mK
    14 μW@20 mK
    CryoconceptHEXA-DRY L10450 μW@100 mK
    DownLoad: CSV

    表 2  国内报道的经典稀释制冷机研究进展

    Table 2.  Research progress of classical dilution refrigerators reported in China.

    单位/企业目前最低温度/mK制冷功率
    中国科学院物理研究所<7.6>450 μW@100 mK
    中国科学院理化技术研究所[7]<18>350 μW@100 mK
    中国电子科技集团公司第十六研究所7.9>450 μW@100 mK
    安徽大学/知冷科技8.5550 μW@100 mK
    中船鹏力超低温12>450 μW@100 mK
    本源量子<10>450 μW@100 mK
    北京飞斯科科技有限公司<10>300 μW@100 mK
    集焓科学仪器有限公司6.8>400 μW@100 mK
    DownLoad: CSV

    表 3  蒸发器温度对应的3He及4He蒸气压

    Table 3.  3He and 4He vapor pressures corresponding to evaporator temperature.

    蒸发器温度/KP30/PaP40/Pax3/%aP3/PaP4/Pa(P3+ P4)/Pa[P3/(P3+P4)]/%
    0.96955.5420.784.4724.235.49929.7381.51
    0.83781.5260.885.1317.061.51318.5891.86
    0.71800.3037515.9810.760.30111.0697.28
    0.670.60.0374851.27.116.020.0376.0699.39
    0.520.50.0021781.48.692.490.00212.5099.91
    0.43.590.0011.811.070.720.00100.7299.86
    DownLoad: CSV
  • [1]

    郑茂文, 卫铃佼, 全加, 林鹏, 梁惊涛, 赵密广 2020 低温物理学报 41 211

    Zheng M W, Wei L J, Quan J, Lin P, Liang J T, Zhao M G. 2020 Low Temp. Phys. 41 211

    [2]

    Uhlig K 2015 Cryogenics 66 6Google Scholar

    [3]

    Scholz P A, Kraft-Bermuth S, Andrianov V 2016 J. Low Temp. Phys. 184 576Google Scholar

    [4]

    Zheng M W, Quan J, Wang N L, Li C Z, Zhao M G, Wei L J, Liang J T 2019 J. Low Temp. Phys. 19 1

    [5]

    London H 1951 Proceeding of International Conference on Low Temperature Physics, Oxford p157

    [6]

    Das P, Ouboter R D B, Taconis K W 1965 9th International Conference on Low Temperature Physics Olenum Press, London, 1965 p1253

    [7]

    Zheng M W, Li J G, Guo H W, Wei L J, Pan Z J, Li Rui X, Chen H L, Liang J T 2024 Cryogenics 138 103802Google Scholar

    [8]

    Lounasmaa O V 1979 J. Phys. E: Sci. Instrum. 12 668Google Scholar

    [9]

    Zhao Z Y, Wang C 2020 Cryogenic Engineering and Technologies (New York: CRC Press) p317

    [10]

    Guglielmo V, Lara R 2008 The Art of Cryogenics( British: British Library ) p143

    [11]

    Lounasmaa O V 1974 Experimental Principles and Methods Below 1K(New York: Academic Press INC

    [12]

    Edwards D O, Pettersen M S 1992 J. Low Temp. Phys. 87 3

    [13]

    Wilks J 1967 The Properties of Liquid and Solid Helium (Oxford: Clarendon Press

    [14]

    Walker E J, Fairbank H A 1960 Phys. Rev. Lett. 5 139Google Scholar

    [15]

    Graf E H, Lee D M, Reppy J D 1965 Phys. Rev. Lett. 19 417Google Scholar

    [16]

    Edwards D O, Daunt J G 1961 Phys. Rev. 124 640Google Scholar

    [17]

    van Leeuwen J M J, Cohen E G D 1961 Physica 27 1157Google Scholar

    [18]

    Masaki N, Yoshiko F, Toshinobu S 1987 Jpn. J. Appl. Phys. 26 69Google Scholar

    [19]

    White G K 1968 Experimental Techniques in Low Temperature Physics (Oxford: Clarendon Press

    [20]

    Wheatley J C, Rapp R E, Johnson R T 1971 J. Low Temp. Phys. 4 1Google Scholar

    [21]

    Abel W R, Wheatley J C 1968 Phys. Rev. Lett. 21 1231Google Scholar

    [22]

    Wheatley J C, Vilches O E, Abel W R 1968 Phys. 4 1Google Scholar

    [23]

    Wheatley J C, Rapp R E, Johnson R T 1971 J. Low. Temp. Phys. 4 1Google Scholar

    [24]

    Mota A C, Platzeck R P, Rapp R E, Wheatley J C 1969 Phys. Rev. 177 266Google Scholar

    [25]

    Radebaugh R, Siegwarth J D 1971 Phys. Rev. Lett. 27 796

    [26]

    Radebaugh R, Siegwarth J D 1971 Cryogenics 11 368Google Scholar

    [27]

    Peterson R E, Anderson A C 1973 J. Low Temp. Phys. 11 639Google Scholar

    [28]

    Kuerten J G M, Castelijns C A M, de Waele A T A M, Gijsman H M 1985 Cryogenics 25 419Google Scholar

    [29]

    Peshkov V P 1970 Cryogenics 10 3Google Scholar

    [30]

    Bunkov Y M, Guénault A M, Hayward D J, Jackson D A, Kennedy C J, Nichols T R, Miller I E, Pickett G R, Ward M G 1991 J. Low Temp. Phys. 83 257Google Scholar

    [31]

    Vermeulen G A, Frossati G 1987 Cryogenics 27 139Google Scholar

    [32]

    冉启泽, 钱永嘉, 朱元贞 1979 低温物理 1 18

    Ran Q Z, Qian Y J, Zhu Y J 1979 Low Temp. Phys. 1 18

    [33]

    Uhlig K, Hehn W 1993 Cryogenics 33 1028Google Scholar

    [34]

    Uhlig K, Hehn W 1994 Cryogenics 3 587

    [35]

    Uhlig K, Hehn W 1997 Cryogenics 37 279Google Scholar

    [36]

    Koike Y, Morii Y, Igarashi T, Kubota M, Hiresaki Y, Tanida K 1999 Cryogenics 39 579Google Scholar

    [37]

    Uhlig K 2004 Cryogenics 44 53Google Scholar

    [38]

    Uhlig K 2008 Cryogenics 48 138Google Scholar

    [39]

    Sakon T, Nojiril H, Koyama K 2003 J. Phys Soc. Jpn. 72 140

    [40]

    Herrmann R, Ofitserov A V, Khlyustikov I N 2005 Instrum. Exp. Tech. 48 5

    [41]

    Shvarts V, Zhao Z, Bobb L, Jirmanus M 2009 J. Phys. Conf. Ser. 150 1

    [42]

    Uhlig K 2009 International Cryocooler Conference 15, Long Beach, California, June 9-12, 2009 p15497

    [43]

    Umeno T, Maehata K, Ishibashi K 2010 Cryogenics 50 314Google Scholar

    [44]

    Singh V, Mathimalar S, Dokania N, et al. 2013 Pramana – J. Phys. 81 719Google Scholar

    [45]

    Hata T, Matsumoto T, Obara K 2014 J. Low Temp. Phys. 175 471

    [46]

    Mikheev V A, Maidanov V A, Mikhin N P 1984 Cryogenics 24 190Google Scholar

    [47]

    Mohandas P, Cowan B P, Saunders J 1994 Physica B 194 55

    [48]

    Prouvé T, Luchier N, Duband L 2008 Cryocoolers 15 California, US, June 9–12, 2008 p497

    [49]

    Teleberg G, Chase S T, Piccirillo L 2006 SPIE Conf. Ser. 6275 62750D

    [50]

    Sivokon V E, Dotsenko V V, Pogorelov L A, Sobolev V I 1992 Cryogenics 32 207Google Scholar

    [51]

    俎红叶, 程维军, 王亚南, 王晓涛, 李柯, 戴巍 2023 物理学报 72 080701

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701

    [52]

    Pennings N H, de Bruyn Ouboter R, Taconis K W 1976 Physica 84B 249

    [53]

    Pennings N H, Taconis K W, de Bruyn Ouboter R 1976 Physica 81B 101

    [54]

    Pennings N H, Taconis K W, de Bruyn Ouboter R 1976 Physica 84B 102

    [55]

    Satoh N K, Satoh T, Ohtsuka T, Fukuzawa N, Satoh N 1987 J. Low Temp. Phys. 67 195Google Scholar

    [56]

    Duband L, Hui L, Lange A 1990 Cryogenics 30 3 263

    [57]

    Roach P R, Helvensteijn Ben P M 1999 Cryogenics 39 1015Google Scholar

    [58]

    Benoit A, Pujol S 1994 Cryogenics 34 421

    [59]

    Sirbi A, Pouilloux B, Benoit A, Lamarre J M 1999 Cryogenics 39 665Google Scholar

    [60]

    Sentis L, Delmas J, Camus P, et al. 2005 Cryocoolers 13 New York, US 2005 pp533-542

    [61]

    Triqueneaux S, Sentis L, Camus P, Benoit A, Guyot G 2006 Cryogenics 46 288Google Scholar

    [62]

    Martin F, Vermeulen G, Camus P, Benoit A 2010 Cryogenics 50 623Google Scholar

    [63]

    Roach P R, Helvensteijn B P M 1999 10th International Cryocooler Conference MONTEREY, CA , May 26-28, 1999 pp647-653

    [64]

    Chaudhry G, Vermeulen G 2012 J. Low Temp. Phys. 169 90Google Scholar

    [65]

    Chaudhry G, Volpe A, Camus P, Triqueneaux S, Vermeulen G 2012 Cryogenics 52 471Google Scholar

    [66]

    Camus P, Vermeulen G, Volpe A, Triqueneaux S, Benoit A, Butterworth J, D’Escrivan S, Tirolien T 2014 J. Low Temp. Phys. 176 1069Google Scholar

    [67]

    Nagata A, Sugita H, Shinozaki K, Sato Y 2018 Cryocoolers 20 Burlington, VT, June18-21, 2018 pp357-367

    [68]

    Keisuke S, Kenichiro S, Yoichi S, Hiroyuki S, Kazuhisa M, Takao N, Shoji T, Katsuhiro N, Gerard V, Philippe C, Sebastien T, Sylvain M, Stephane D 2016 Trans. JSASS Aerospace Tech. 14 27

    [69]

    Chandra M B, Nisith Kr D 2017 IOP Conf. Ser. Mater. Sci. Eng. 171 012143Google Scholar

    [70]

    Harriso J P 1979 J. Low Temp. Phys. 37 1Google Scholar

    [71]

    郑茂文 2022 博士学位论文(北京: 中国科学院大学/理化技术研究所)

    Zheng M W 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Science/ Technical Institute of Physics and Chemistry

    [72]

    Betts D S著(金铎, 冉启泽, 曹烈兆译) 1995 极低温(mK)技术概论 ( 北京: 中国科学技术大学出版社)

    Betts D S(translated by Jin D, Ran Q Z, Cao L Z) 1995 Ultra low Temperature Technologies (Hefei: Press of University of Science and Technology of China

    [73]

    Chaudhry G 2009 Ph. D. Dissertation (Cambridge, Massachusetts, USA: Massachusetts Institute of Technology

  • [1] Yang Xiao-Kun, Li Wei, Huang Yong-Chang. Quantum game— “PQ” problem. Acta Physica Sinica, doi: 10.7498/aps.73.20230592
    [2] Wu Yu-Kai, Duan Lu-Ming. Research progress of ion trap quantum computing. Acta Physica Sinica, doi: 10.7498/aps.72.20231128
    [3] Fan Heng. Breakthrough of error correction in quantum computing. Acta Physica Sinica, doi: 10.7498/aps.72.20230330
    [4] Li Ke, Wang Ya-Nan, Liu Ping, Yu Fang-Qiu, Dai Wei, Shen Jun. Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator. Acta Physica Sinica, doi: 10.7498/aps.72.20231102
    [5] Zu Hong-Ye, Cheng Wei-Jun, Wang Ya-Nan, Wang Xiao-Tao, Li Ke, Dai Wei. Experimental analysis of condensation-pump dilution refrigerators. Acta Physica Sinica, doi: 10.7498/aps.72.20222257
    [6] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220596
    [7] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, doi: 10.7498/aps.71.20220635
    [8] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, doi: 10.7498/aps.71.20220224
    [9] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, doi: 10.7498/aps.71.20212245
    [10] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, doi: 10.7498/aps.71.20221900
    [11] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, doi: 10.7498/aps.70.20211492
    [12] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, doi: 10.7498/aps.70.20210923
    [13] Wang Chang, Li Ke, Shen Jun, Dai Wei, Wang Ya-Nan, Luo Er-Cang, Shen Bao-Gen, Zhou Yuan. Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region. Acta Physica Sinica, doi: 10.7498/aps.70.20202237
    [14] He Ying-Ping, Hong Jian-Song, Liu Xiong-Jun. Non-abelian statistics of Majorana modes and the applications to topological quantum computation. Acta Physica Sinica, doi: 10.7498/aps.69.20200812
    [15] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, doi: 10.7498/aps.68.20190142
    [16] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, doi: 10.7498/aps.67.20180845
    [17] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, doi: 10.7498/aps.67.20180710
    [18] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, doi: 10.7498/aps.62.010301
    [19] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, doi: 10.7498/aps.57.689
    [20] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, doi: 10.7498/aps.56.3709
Metrics
  • Abstract views:  219
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2024
  • Accepted Date:  14 September 2024
  • Available Online:  28 October 2024

/

返回文章
返回