-
Ion trap is one of the leading physical platforms to implement quantum computation. Currently, high-fidelity elementary quantum operations above the fault-tolerant threshold, including state preparation, measurement and universal gates, have been demonstrated for tens of ionic qubits. One important future research direction is to further enlarge the qubit number to the scale required for solving practical problems while maintaining the high performance of individual qubits. This paper introduces the current mainstream schemes for scalable ion trap quantum computation like quantum charge-coupled device (QCCD) and ion-photon quantum network, and describes the main limiting factors in current research. Then we further explore new schemes to scale up the qubit number like two-dimensional ion crystals and dual-type qubit, and discuss the future research directions.
-
Keywords:
- quantum computation /
- ion trap /
- qubit
[1] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091Google Scholar
[2] Moses S A, Baldwin C H, Allman M S, et al. 2023 arXiv 2305.03828
[3] Ryan-Anderson C, Brown N C, Allman M S, et al. 2022 arXiv 2208.01863
[4] Bruzewicz C D, Chiaverini J, Mcconnell R, Sage J M 2019 Appl. Phys. Rev. 6 021314Google Scholar
[5] Harty T P, Allcock D T C, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N, Lucas D M 2014 Phys. Rev. Lett. 113 220501Google Scholar
[6] Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar
[7] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, Wineland D J 2016 Phys. Rev. Lett. 117 060505Google Scholar
[8] Egan L, Debroy D M, Noel C, Risinger A, Zhu D, Biswas D, Newman M, Li M, Brown K R, Cetina M, Monroe C 2021 Nature 598 281Google Scholar
[9] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar
[10] Li B W, Wu Y K, Mei Q X, Yao R, Lian W Q, Cai M L, Wang Y, Qi B X, Yao L, He L, Zhou Z C, Duan L M 2023 PRX Quantum 4 010302Google Scholar
[11] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259Google Scholar
[12] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004Google Scholar
[13] Yao R, Lian W Q, Wu Y K, Wang G X, Li B W, Mei Q X, Qi B X, Yao L, Zhou Z C, He L, Duan L M 2022 Phys. Rev. A 106 062617Google Scholar
[14] Kielpinski D, Monroe C, Wineland D J 2002 Nature 417 709Google Scholar
[15] Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar
[16] Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2015 Nat. Phys. 11 37Google Scholar
[17] Stephenson L J, Nadlinger D P, Nichol B C, An S, Drmota P, Ballance T G, Thirumalai K, Goodwin J F, Lucas D M, Ballance C J 2020 Phys. Rev. Lett. 124 110501Google Scholar
[18] Ballance C J, Schäfer V M, Home J P, Szwer D J, Webster S C, Allcock D T C, Linke N M, Harty T P, Aude Craik D P L, Stacey D N, Steane A M, Lucas D M 2015 Nature 528 384Google Scholar
[19] Sosnova K, Carter A, Monroe C 2021 Phys. Rev. A 103 012610Google Scholar
[20] Tan T R, Gaebler J P, Lin Y, Wan Y, Bowler R, Leibfried D, Wineland D J 2015 Nature 528 380Google Scholar
[21] Drmota P, Main D, Nadlinger D P, Nichol B C, Weber M A, Ainley E M, Agrawal A, Srinivas R, Araneda G, Ballance C J, Lucas D M 2023 Phys. Rev. Lett. 130 090803Google Scholar
[22] Szymanski B, Dubessy R, Dubost B, Guibal S, Likforman J P, Guidoni L 2012 Appl. Phys. Lett. 100 171110Google Scholar
[23] Shen C, Duan L M 2014 Phys. Rev. A 90 022332Google Scholar
[24] Wang S T, Shen C, Duan L M 2015 Sci. Rep. 5 8555Google Scholar
[25] Wu Y K, Liu Z D, Zhao W D, Duan L M 2021 Phys. Rev. A 103 022419Google Scholar
[26] Duan L M, Yang H X 2022 China Patent CN112749808B(in Chinese)[段路明, 杨蒿翔 2022 中国专利 CN112749808B
[27] Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar
[28] Allcock D T C, Campbell W C, Chiaverini J, Chuang I L, Hudson E R, Moore I D, Ransford A, Roman C, Sage J M, Wineland D J 2021 Appl. Phys. Lett. 119 214002Google Scholar
[29] Feng L, Huang Y Y, Wu Y K, Guo W X, Ma J Y, Yang H X, Zhang L, Wang Y, Huang C X, Zhang C, Yao L, Qi B X, Pu Y F, Zhou Z C, Duan L M 2023 arXiv 2306.14405
-
图 2 利用一对正交放置的声光偏转器进行二维单独寻址[26]. 图中AOD1和AOD2, AOD1' 和AOD2' 各为一对正交放置的声光偏转器, 各自可进行水平和竖直方向的单独寻址
Figure 2. Individual addressing in 2D through a pair of cross-placed AODs[26]. Here AOD1 and AOD2, and AOD1' and AOD2', are two pairs of cross-placed AODs, each of which can achieve individual addressing in the horizontal and vertical directions.
图 3 镱-171离子的双重类型量子比特方案[27], 编码在S1/2和F7/2超精细能级上的量子比特共振频率不同, 串扰误差小于量子纠错阈值, 且可通过双色窄带激光进行经由D5/2能级过渡进行相干转换
Figure 3. Dual-type qubit scheme for 171Yb+ ion[27]. Qubits encoded in S1/2 and F7/2 hyperfine levels have distinct resonant frequencies, thus leading to a crosstalk error below the threshold of fault-tolerant quantum computing. The two qubit types can be coherently converted into each other by bichromatic narrow-band laser via intermediate D5/2 levels.
-
[1] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091Google Scholar
[2] Moses S A, Baldwin C H, Allman M S, et al. 2023 arXiv 2305.03828
[3] Ryan-Anderson C, Brown N C, Allman M S, et al. 2022 arXiv 2208.01863
[4] Bruzewicz C D, Chiaverini J, Mcconnell R, Sage J M 2019 Appl. Phys. Rev. 6 021314Google Scholar
[5] Harty T P, Allcock D T C, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N, Lucas D M 2014 Phys. Rev. Lett. 113 220501Google Scholar
[6] Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar
[7] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, Wineland D J 2016 Phys. Rev. Lett. 117 060505Google Scholar
[8] Egan L, Debroy D M, Noel C, Risinger A, Zhu D, Biswas D, Newman M, Li M, Brown K R, Cetina M, Monroe C 2021 Nature 598 281Google Scholar
[9] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar
[10] Li B W, Wu Y K, Mei Q X, Yao R, Lian W Q, Cai M L, Wang Y, Qi B X, Yao L, He L, Zhou Z C, Duan L M 2023 PRX Quantum 4 010302Google Scholar
[11] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259Google Scholar
[12] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004Google Scholar
[13] Yao R, Lian W Q, Wu Y K, Wang G X, Li B W, Mei Q X, Qi B X, Yao L, Zhou Z C, He L, Duan L M 2022 Phys. Rev. A 106 062617Google Scholar
[14] Kielpinski D, Monroe C, Wineland D J 2002 Nature 417 709Google Scholar
[15] Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar
[16] Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2015 Nat. Phys. 11 37Google Scholar
[17] Stephenson L J, Nadlinger D P, Nichol B C, An S, Drmota P, Ballance T G, Thirumalai K, Goodwin J F, Lucas D M, Ballance C J 2020 Phys. Rev. Lett. 124 110501Google Scholar
[18] Ballance C J, Schäfer V M, Home J P, Szwer D J, Webster S C, Allcock D T C, Linke N M, Harty T P, Aude Craik D P L, Stacey D N, Steane A M, Lucas D M 2015 Nature 528 384Google Scholar
[19] Sosnova K, Carter A, Monroe C 2021 Phys. Rev. A 103 012610Google Scholar
[20] Tan T R, Gaebler J P, Lin Y, Wan Y, Bowler R, Leibfried D, Wineland D J 2015 Nature 528 380Google Scholar
[21] Drmota P, Main D, Nadlinger D P, Nichol B C, Weber M A, Ainley E M, Agrawal A, Srinivas R, Araneda G, Ballance C J, Lucas D M 2023 Phys. Rev. Lett. 130 090803Google Scholar
[22] Szymanski B, Dubessy R, Dubost B, Guibal S, Likforman J P, Guidoni L 2012 Appl. Phys. Lett. 100 171110Google Scholar
[23] Shen C, Duan L M 2014 Phys. Rev. A 90 022332Google Scholar
[24] Wang S T, Shen C, Duan L M 2015 Sci. Rep. 5 8555Google Scholar
[25] Wu Y K, Liu Z D, Zhao W D, Duan L M 2021 Phys. Rev. A 103 022419Google Scholar
[26] Duan L M, Yang H X 2022 China Patent CN112749808B(in Chinese)[段路明, 杨蒿翔 2022 中国专利 CN112749808B
[27] Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar
[28] Allcock D T C, Campbell W C, Chiaverini J, Chuang I L, Hudson E R, Moore I D, Ransford A, Roman C, Sage J M, Wineland D J 2021 Appl. Phys. Lett. 119 214002Google Scholar
[29] Feng L, Huang Y Y, Wu Y K, Guo W X, Ma J Y, Yang H X, Zhang L, Wang Y, Huang C X, Zhang C, Yao L, Qi B X, Pu Y F, Zhou Z C, Duan L M 2023 arXiv 2306.14405
Catalog
Metrics
- Abstract views: 4582
- PDF Downloads: 305
- Cited By: 0