Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“Quantum memory” quantum computers and noiseless phton echoes

Zhou Zong-Quan

Citation:

“Quantum memory” quantum computers and noiseless phton echoes

Zhou Zong-Quan
cstr: 32037.14.aps.71.20212245
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • One of the most important applications of quantum computing is to crack classical cryptosystem. Previous studies showed that the number of qubits required to crack the widely used 2048-bit RSA cipher is about 20 million, which is far beyond the current technology for quantum computing. Recently, É. Gouzien and N. Sangouard of the French Alternative Energies and Atomic Energy Commission proposed a quantum computing architecture based on a two-dimensional grid of superconducting qubits and a three-dimensional multimode quantum memory. They showed that only 13k qubits are required to crack a 2048-bit RSA integer with the help of a long-lived quantum memory with 28 million spatial modes and 45 temporal modes. Their results clearly demonstrate the values of quantum memories in quantum computing and provide an alternative approach for building practically useful quantum computers. Quantum computers require quantum memories to work at microwave band, which remains an outstanding challenge. Based on a detailed analysis of atomic radiations during the quantum storage process, we recently proposed a noiseless-photon-echo protocol which can successfully eliminate the spontaneous emission noise in photon echoes. This protocol is expected to further enable microwave quantum storage and the construction of “quantum memory” quantum computers.
      Corresponding author: Zhou Zong-Quan, zq_zhou@ustc.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0304100).
    [1]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [2]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [3]

    Gidney C, Ekerå M 2021 Quantum 5 433Google Scholar

    [4]

    Gouzien E, Sangouard N 2021 Phys. Rev. Lett. 127 140503Google Scholar

    [5]

    Ma Y, Ma Y Z, Zhou Z Q, et al. 2021 Nat. Commun. 12 2381Google Scholar

    [6]

    Ruggiero J, Le Gouët J L, Simon C, Chanelière T 2009 Phys. Rev. A 79 053851Google Scholar

    [7]

    Scarani V, Iblisdir S, Gisin N, et al. 2005 Rev. Mod. Phys. 77 1225Google Scholar

    [8]

    Ma Y Z, Jin M, Chen D L, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 4378Google Scholar

    [9]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [10]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

  • 图 1  “量子存储”量子计算机的架构图[4]

    Figure 1.  Quantum computing architecture with multimode quantum memories[4].

    表 1  光与原子相互作用中的辐射分类

    Table 1.  1. Radiations from the atomic ensemble when interacting with light.

    辐射类型
    Radiation Type
    来源
    Source
    输出结果
    Output
    受激辐射
    Stimulated emission
    信号激励
    Signal pulses
    目标信号
    Target signal
    控制光激励
    Control pulses
    特定辐射模式的相干噪声
    Coherent noise with certain modes
    自发辐射
    Spontaneous emission
    激发态布居数
    Population in the excited state
    辐射模式任意的非相干噪声
    Incoherent noise with arbitrary modes
    DownLoad: CSV
  • [1]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [2]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [3]

    Gidney C, Ekerå M 2021 Quantum 5 433Google Scholar

    [4]

    Gouzien E, Sangouard N 2021 Phys. Rev. Lett. 127 140503Google Scholar

    [5]

    Ma Y, Ma Y Z, Zhou Z Q, et al. 2021 Nat. Commun. 12 2381Google Scholar

    [6]

    Ruggiero J, Le Gouët J L, Simon C, Chanelière T 2009 Phys. Rev. A 79 053851Google Scholar

    [7]

    Scarani V, Iblisdir S, Gisin N, et al. 2005 Rev. Mod. Phys. 77 1225Google Scholar

    [8]

    Ma Y Z, Jin M, Chen D L, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 4378Google Scholar

    [9]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [10]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

Metrics
  • Abstract views:  9576
  • PDF Downloads:  310
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2021
  • Accepted Date:  11 January 2022
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022
  • /

    返回文章
    返回