Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical quantum storage of cold atomic ensemble mediated by magnetic field

Dong Liang Chen Linyu Wang Xingchang Liang Xinyun Zuo Ying Chen Jiefei

Citation:

Optical quantum storage of cold atomic ensemble mediated by magnetic field

Dong Liang, Chen Linyu, Wang Xingchang, Liang Xinyun, Zuo Ying, Chen Jiefei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Optical quantum memory plays a critical role in fields such as quantum computing, quantum sensing, and quantum communication. Cold atomic systems, owing to their excellent quantum coherence, controllability, and exceptional capability in handling weak optical fields, have emerged as one of the key platforms for faithful optical quantum state storage. Among these, cigarette-shaped, with up to 2 cm or more, cold atomic ensembles exhibit over 85 % storage effciency due to their optical depth reaching 100 or more. However, further applications are significantly hindered by the limited storage lifetimes caused by inhomogeneous residual magnetic fields along the long atomic cloud. This study analyzes the issue of atomic spin decoherence induced by non-uniform magnetic field with linear gradient, and obtain the result that storage lifetime dramatically decreases with this increasing linear gradient. Further, we demonstrate that in our two-dimensional magneto-optical trap system with a longitudinal atom-light interaction length of 2.7 cm, a DC magnetic field can provide a quantization axis, suppress the effects of inhomogeneous fields,and regulate the cycles of spin dephasing and rephasing. With the proper setting for optical pumping process of magnetic quantum levels, adjusting the pump laser power effectively controls the atomic population distribution, thereby precisely optimizes the light storage effciency at different time bins, as shown in Fig. 7(a). Based on these findings, we propose a scheme for storage of time-bin entangled photon pairs, who are prepared at two different time slots of DLCZ process. A bias magnetic field on the generation MOT (left panel of Fig. 7) induces modulation on the storage time as (a), so that read pulse exerted on rj reads only wj (j= 1, 2). Therefore, the two photonic time bins becomes distingushable and orthogonal. The retrieved photon pairs thus have fully controllable time bins for both photons. Compared to other degrees of freedom, the time encrypted photonic entanglement remains robust in long-distance network.
  • [1]

    Zhang S, Wu Y K, Li C, Jiang N, Pu Y F, Duan L M 2022 Phys. Rev. Lett. 128 080501

    [2]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nat. Photon. 13 210

    [3]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777

    [4]

    Bourassa J E, Alexander R N, Vasmer M, Patil A, Tzitrin I, Matsuura T, Su D, Baragiola B Q, Guha S, Dauphinais G, Sabapathy K K, Menicucci N C, Dhand I 2021 Quantum 5 392

    [5]

    Davidson O, Yogev O, Poem E, Firstenberg O 2023 Phys. Rev. Lett. 131 033601

    [6]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [7]

    Zaiser S, Rendler T, Jakobi I, Wolf T, Lee S Y, Wagner S, Bergholm V, Schulte-Herbrüggen T, Neumann P, Wrachtrup J 2016 Nat. Commun. 7 12279

    [8]

    Huang W, Liang X, Zhao J, Wu Z, Zhang K, Yuan C H, Wu Y, Fan B, Zhang W, Chen L 2024 arXiv:2410.23674

    [9]

    Yang Y 2019 Phys. Rev. Lett. 123 110501

    [10]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A 2008 Phys. Rev. Lett. 100 093602

    [11]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601

    [12]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M, Polzik E S 2010 Phys. Rev. Lett. 104 133601

    [13]

    Jia W, Xu V, Kuns K, Nakano M, Barsotti L, Evans M, Mavalvala N, members of the LIGO Scientific Collaboration 2024 Science 385 1318

    [14]

    Liu J L, Luo X Y, Yu Y, Wang C Y, Wang B, Hu Y, Li J, Zheng M Y, Yao B, Yan Z, Teng D, Jiang J W, Liu X B, Xie X P, Zhang J, Mao Q H, Jiang X, Zhang Q, Bao X H, Pan J W 2024 Nature 629 579

    [15]

    Van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Malik P, Seubert M, Bauer T, Rosenfeld W, Zhang W, Becher C, Weinfurter H 2022 Nature 607 69

    [16]

    Stolk A J, van der Enden K L, Slater M C, te Raa-Derckx I, Botma P, Van Rantwijk J, Biemond J B, Hagen R A, Herfst R W, Koek W D, Meskers A J H, Voller R, Zwet E J v, Markham M, Edmonds A M, Geus J F, Elsen F, Jungbluth B, Haefner C, Tresp C, Stuhler J S, Ritter S, Hanson R 2024 Sci. Adv. 10 eadp6442

    [17]

    Knaut C M, Suleymanzade A, Wei Y C, Assumpcao D R, Stas P J, Huan Y Q, Machielse B, Knall E N, Sutula M, Baranes G, Sinclair N, De-Eknamkul C, Levonian D S, Bhaskar M K, Park H, M L, Lukin M D 2024 Nature 629 573

    [18]

    Luo X Y, Wang C Y, Zheng M Y, Wang B, Liu J L, Gao B F, Li J, Yan Z, Ke Q M, Teng D, Wang R C, Wu J, Huang J, Li H, You L X, Xie X P, Xu F, Zhang Q, Bao X H, Pan J W 2025 arXiv:2504.05660

    [19]

    Gorshkov A V, André A, Fleischhauer M, Sørensen A S, Lukin M D 2007 Phys. Rev. Lett. 98 123601

    [20]

    Hsiao Y F, Chen H S, Tsai P J, Chen Y C 2014 Phys. Rev. A 90 055401

    [21]

    Tranter A D, Slatyer H J, Hush M R, Leung A C, Everett J L, Paul K V, Vernaz-Gris P, Lam P K, Buchler B C, Campbell G T 2018 Nat. Commun. 9 4360

    [22]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602

    [23]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nat. Photon. 13 346

    [24]

    Cao M, Hoffet F, Qiu S, Sheremet A S, Laurat J 2020 Optica 7 1440

    [25]

    Wen R, Zou C L, Zhu X, Chen P, Ou Z, Chen J, Zhang W 2019 Phys. Rev. Lett. 122 253602

    [26]

    Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A, Chen J 2022 Phys. Rev. Lett. 128 083605

    [27]

    Wang X, Wang J, Zuo Y, Dong L, Siviloglou G A, Chen J 2023 Chinese Physics B 32 074206

    [28]

    Liu Y X, Wang Z H, Guan S J, Wang Q X, Zhang P F, Li G, Zhang T C 2024 Acta Phys. Sin. 73 113701 (in Chinses) [刘岩鑫,王志辉,管世军,王勤霞,张鹏飞,李刚,张天才 2024 物理学报 73 113701]

    [29]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381

    [30]

    Dudin Y, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801

    [31]

    Wang J, Dong L, Wang X, Zhou Z, Huang J, Zuo Y, Siviloglou G A, Chen J F 2024 Phys. Rev. Research 6 L042002

    [32]

    Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501

    [33]

    Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501

    [34]

    Choi K S 2011 Coherent control of entanglement with atomic ensembles. Ph.D. Dissertation, USA, California Institute of Technology

  • [1] LIU Chang, SUN Mingshuo, LUO Yizhen, DONG Shuyan, ZHANG Chunhui, WANG Qin. Dual-paramter-scanning-based quantum- memory- assisted measurement-device-independent quantum key distribution protocol. Acta Physica Sinica, doi: 10.7498/aps.75.20251171
    [2] Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng. Optical and hyperfine spectroscopic investigations on europium ions doped in yttrium orthosilicate waveguides fabricated by focused ion beam milling. Acta Physica Sinica, doi: 10.7498/aps.73.20241070
    [3] Liang Peng-Jun, Zhu Tian-Xiang, Xiao Yi-Xin, Wang Yi-Yang, Han Yong-Jian, Zhou Zong-Quan, Li Chuan-Feng. Concentration-dependent optical and spin inhomogeneous linewidth of europium-doped yttrium orthosilicate crystals. Acta Physica Sinica, doi: 10.7498/aps.73.20240116
    [4] Zeng Tao, Dong Yu-Chen, Wang Tian-Hao, Tian Long, Huang Chu-Yi, Tang Jian, Zhang Jun-Pei, Yu Yi, Tong Xin, Fan Qun-Chao. Finite element analysis of zero magnetic field shielding for polarized neutron scattering. Acta Physica Sinica, doi: 10.7498/aps.72.20230559
    [5] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.72.20231203
    [6] Fan Wen-Xin, Wang Min-Jie, Jiao Hao-Le, Lu Jia-Jin, Liu Hai-Long, Yang Zhi-Fang, Xi Meng-Qi, Li Shu-Jing, Wang Hai. Dependence of retrieval efficiency on waist ratio of read beam to anti-Stokes photon mode in cavity-enhanced quantum memory. Acta Physica Sinica, doi: 10.7498/aps.72.20230966
    [7] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, doi: 10.7498/aps.71.20212245
    [8] Li Li-Juan, Ming Fei, Song Xue-Ke, Ye Liu, Wang Dong. Review on entropic uncertainty relations. Acta Physica Sinica, doi: 10.7498/aps.71.20212197
    [9] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, doi: 10.7498/aps.71.20220083
    [10] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20211803
    [11] Li Zong-Feng, Liu Duan-Cheng, Zhou Zong-Quan, Li Chuan-Feng. Atomic frequency comb optical memory in EuCl3·6H2O crystal. Acta Physica Sinica, doi: 10.7498/aps.70.20210648
    [12] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, doi: 10.7498/aps.68.20181729
    [13] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20190039
    [14] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20182207
    [15] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, doi: 10.7498/aps.68.20182215
    [16] Wang Sheng-Zhi, Wen Ya-Fei, Zhang Chang-Rui, Wang Deng-Xin, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Dependence of performance character of photon-atom entanglement source on retrieval efficiency. Acta Physica Sinica, doi: 10.7498/aps.68.20181314
    [17] An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei. Coherent manipulation of single collective excitations in a cold atomic ensemble. Acta Physica Sinica, doi: 10.7498/aps.67.20181183
    [18] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, doi: 10.7498/aps.66.074201
    [19] Sun Ying, Zhao Shang-Hong, Dong Chen. Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica, doi: 10.7498/aps.64.140304
    [20] Liu Rui, Yu Ya-Fei, Zhang Zhi-Ming. Generation of narrowband triphoton frequency-entangled states via cold-atom ensembles. Acta Physica Sinica, doi: 10.7498/aps.63.144203
Metrics
  • Abstract views:  9
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  19 December 2025
  • /

    返回文章
    返回