-
Light is the best carrier of information in quantum network. By exploring the interaction of light with matter, quantum memory technology can be further developed. Quantum memory can simultaneously receive and obtain optical quantum information on demand, which is the basis for establishing large-scale quantum computing and long-distance quantum communication. However, the performance of quantum memory directly affects its practical application process and the progress of quantum information technology. In the past two decades, quantum memory in various physical systems and quantum information protocols has been intensively studied, its performance has been significantly improved, and its relevant applications have been widely demonstrated. In this paper, we firstly sort the research progress of quantum memory metrics in the past ten years, and discuss the development of efficiency, lifetime, fidelity and mode capacity in detail according to the characteristics of cold atom systems and solid-state doped ion crystal systems. Secondly, the recent typical applications of quantum memory in quantum entanglement, memory-enhanced multi-photon processes, and quantum interference of different particles are introduced. Finally, the future development of quantum storage is prospected and summarized.
-
Keywords:
- quantum memory /
- quantum repeater /
- cold atoms /
- solid-state doped ionic crystal
[1] Walmsley I A 2015 Science 348 525Google Scholar
[2] Wootters W K, Zurek W H 1982 Nature 299 802Google Scholar
[3] Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar
[4] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar
[5] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar
[6] Gisin N, Ribordy G, Tittel W, Zbinde H 2002 Rev. Mod. Phys. 74 145Google Scholar
[7] Foot C J 2005 Atomic Physics (Oxford: Oxford University Press) pp123–214 Foot C J 2005 Atomic Physics (Oxford: Oxford University Press) pp123–214
[8] Scully M O, Zubairy M S 1999 Quantum Optics (New York: Cambridge University Press) pp145–217 Scully M O, Zubairy M S 1999 Quantum Optics (New York: Cambridge University Press) pp145–217
[9] Nielsen, Michael A, I L Chuang 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition (New York: Cambridge University Press) pp277–343 Nielsen, Michael A, I L Chuang 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition (New York: Cambridge University Press) pp277–343
[10] Hammerer K, SØrensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041Google Scholar
[11] Kimble H J 2008 Nature 453 1023Google Scholar
[12] Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar
[13] 郭光灿 2020 中国科学: 信息科学 50 1395Google Scholar
Guo G C 2020 Sci. Sin. Inform. 50 1395Google Scholar
[14] Simon C 2017 Nat. Photonics 11 678Google Scholar
[15] Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar
[16] Yan Z H, Wu L, Jia X J, Xie C D, Peng K C 2021 Adv. Quantum Technol. 4 2100071Google Scholar
[17] Afzelius M, Gisin N, De Riedmatten H 2015 Phys. Today 68 42Google Scholar
[18] Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar
[19] Bussieres F, Sangouard N, Afzelius M, De Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar
[20] Guo M C, Liu S P, Sun W Y, Ren M M, Wang F D, Zhong M J 2023 Front. Phys. 18 21303Google Scholar
[21] Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar
[22] Simon C, De Riedmatten H, Afzelius M, Sangouard N, Zbinden H, Gisin N 2007 Phys. Rev. Lett. 98 190503Google Scholar
[23] Chou C W, Laurat J, Deng H, Choi K, De Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316Google Scholar
[24] Wei S H, Jing B, Zhang X Y, Liao J Y, Yuan C Z, Fan B Y, Lyu C, Zhou D L, Wang Y, Deng G W, Song H Z, Oblak D, Guo G C, Zhou Q 2022 Laser Photon. Rev. 16 2100219Google Scholar
[25] Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Walmsley I A 2013 Phys. Rev. Lett. 110 133601Google Scholar
[26] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar
[27] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Walmsley I A 2010 Nat. Photonics 4 218Google Scholar
[28] Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603Google Scholar
[29] Michelberger P S, Champion T F M, Sprague M R, Kaczmarek K T, Barbieri M, Jin X M, Walmsley I A 2015 New J. Phys. 17 043006Google Scholar
[30] Guo J, Feng X, Yang P, Yu Z, Chen L Q, Yuan C H, Zhang W 2019 Nat. Commun. 10 148Google Scholar
[31] Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar
[32] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[33] Zhou S, Zhang S, Liu C, Chen J F, Wen J, Loy M M T, Du S 2012 Opt. Express 20 24124Google Scholar
[34] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar
[35] Cao M, Hoffet F, Qi S, Sheremet A S, Laurat J 2020 Optica 7 1440Google Scholar
[36] Davidson J H, Lefebvre P, Zhang J, Oblak D, Tittel W 2020 Phys. Rev. A 101 042333Google Scholar
[37] Akhmedzhanov R A, Gushchin L A, Kalachev A A, Nizov N A, Nizov V A, Sobgayda D A, Zelensky I V 2016 Laser Phys. Lett. 13 115203Google Scholar
[38] Jobez P, Usmani I, Timoney N, Laplane C, Gisin N, Afzelius M 2014 New J. Phys. 16 083005Google Scholar
[39] Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar
[40] Schraft D, Hain M, Lorenz N, Halfmann T 2016 Phys. Rev. Lett. 116 073602Google Scholar
[41] Sabooni M, Kometa S T, Thuresson A, Kröll S, Rippe L 2013 New J. Phys. 15 035025Google Scholar
[42] Hain M, Stabel M, Halfmann T 2022 New J. Phys. 24 023012Google Scholar
[43] Dudin Y O, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801Google Scholar
[44] Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar
[45] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Sellars M J 2015 Nature 517 177Google Scholar
[46] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photonics 10 381Google Scholar
[47] Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Pan J W 2021 Phys. Rev. Lett. 126 090501Google Scholar
[48] Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381Google Scholar
[49] Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar
[50] Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar
[51] Horvath S P, Alqedra M K, Kinos A, Walther A, Dahlström J M, Stefan Kröll, Rippe L 2021 Phys. Rev. Research 3 023099Google Scholar
[52] Mazelanik M, Leszczyński A, Parniak M 2022 Nat. Commun. 13 691Google Scholar
[53] Li C, Zhang S, Wu Y K, Jiang N, Pu Y F, Duan L M 2021 Phys. Rev. X 2 040307Google Scholar
[54] Dideriksen K B, Schmieg R, Zugenmaier M, Polzik E S 2021 Nat. Commun. 12 3699Google Scholar
[55] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar
[56] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar
[57] Tian L, Xu Z, Chen L, Ge W, Yuan H, Wen Y, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar
[58] Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Guo G C 2022 Phys. Rev. Lett. 128 180501Google Scholar
[59] Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar
[60] Wei S H, Jing B, Zhang X Y, Liao J Y, Li H, You L X, Zhou Q 2022 arXiv: 2209.00802[quant-phGoogle Scholar
[61] Ortu A, Holzäpfel A, Etesse J, Afzelius M 2022 npj Quantum Inform. 8 29Google Scholar
[62] Saglamyurek E, Hrushevskyi T, Rastogi A, Cooke L W, Smith B D, LeBlanc L J 2021 New J. Phys. 23 043028Google Scholar
[63] Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, de Riedmatten H 2021 Nature 594 37Google Scholar
[64] Grosshans F, Grangier P 2001 Phys. Rev. A 64 010301Google Scholar
[65] Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar
[66] Gouzien É, Sangouard N 2021 Phys. Rev. Lett. 127 140503Google Scholar
[67] Afzelius M, Sangouard N, Johansson G, Staudt M U, Wilson C M 2013 New J. Phys. 15 065008Google Scholar
[68] Ma Y Z, Jin M, Chen D L, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 4378Google Scholar
[69] 周宗权 2022 物理学报 71 070305Google Scholar
Zhou Z Q 2022 Acta. Phys. Sin. 71 070305Google Scholar
[70] Mirhosseini M, Sipahigil A, Kalaee M, Painter O 2020 Nature 588 599Google Scholar
[71] Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhu S L 2022 Nat. Photonics 16 291Google Scholar
[72] Brubaker B M, Kindem J M, Urmey M D, Mittal S, Delaney R D, Burns P S, Regal C A 2022 Phys. Rev. X 12 021062Google Scholar
[73] Kumar A, Suleymanzade A, Stone M, Taneja L, Anferov A, Schuster D I, Simon J 2023 Nature 615 614Google Scholar
[74] Xu Y, Sayem A A, Fan L, Zou C L, Wang S, Cheng R, Tang H X 2021 Nat. Commun. 12 4453Google Scholar
[75] Gündoǧan M, Ledingham P M, Kutluer K, Mazzera M, De Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar
[76] Askarani M F, Das A, Davidson J H, Amaral G C, Sinclair N, Slater J A, Tittel W 2021 Phys. Rev. Lett. 127 220502Google Scholar
[77] Tiranov A, Strassmann P C, Lavoie J, Brunner N, Huber M, Verma V B, Gisin N 2016 Phys. Rev. Lett. 117 240506Google Scholar
[78] Saglamyurek E, Grimau Puigibert M, Zhou Q, Giner L, Marsili F, Verma V B, Tittel W 2016 Nat. Commun. 7 11202Google Scholar
[79] Kutluer K, Distante E, Casabone B, Duranti S, Mazzera M, de Riedmatten H 2019 Phys. Rev. Lett. 123 030501Google Scholar
[80] Seri A, Lago-Rivera D, Lenhard A, Corrielli G, Osellame R, Mazzera M, de Riedmatten H 2019 Phys. Rev. Lett. 123 080502Google Scholar
[81] Tu Y, Zhang G, Zhai Z, Xu J 2009 Phys. Rev. A 80 033816Google Scholar
[82] Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar
[83] Li X, Liu X, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. A 101 052330Google Scholar
[84] Businger M, Nicolas L, Mejia T S, Ferrier A, Goldner P, Afzelius M 2022 Nat. Commun. 13 6438Google Scholar
[85] Zhang X, Zhang B, Wei S, Li H, Liao J, Li C, Deng G, Wang Y, Song H, You L, Jing B, Chen F, Guo G, Zhou Q 2023 Sci. Adv. 9 eadf4587Google Scholar
[86] Veissier L, Nicolas A, Giner L, Maxein D, Sheremet A S, Giacobino E, Laurat J 2013 Opt. Lett. 38 712Google Scholar
[87] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar
[88] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar
[89] Ding D S, Zhang W, Shi S, Zhou Z Y, Li Y, Shi B S, Guo G C 2016 Light: Science & Applications 5 e16157Google Scholar
[90] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Guo G C 2016 Nat. Commun. 7 13514Google Scholar
[91] Wang C, Yu Y, Chen Y, Cao M, Wang J, Yang X, Li F 2021 Quantum Sci. Technol. 6 045008Google Scholar
[92] Ye Y H, Zeng L, Dong M X, Zhang W H, Li E Z, Li D C, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Lett. 129 193601Google Scholar
[93] Parigi V, D’Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar
[94] Lan S Y, Radnaev A G, Collins O A, Matsukevich D N, Kennedy T A B, Kuzmich A 2009 Opt. Express 17 13639Google Scholar
[95] Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar
[96] Chang W, Li C, Wu Y K, Jiang N, Zhang S, Pu Y F, Duan L M 2019 Phys. Rev. X 9 041033Google Scholar
[97] Chrapkiewicz R, Dabrowski M, Wasilewski W 2017 Phys. Rev. Lett. 118 063603Google Scholar
[98] Wen Y, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar
[99] Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar
[100] Chou C W, De Riedmatten H, Felinto D, Polyakov S V, Van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar
[101] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar
[102] Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, Weinfurter H 2012 Science 337 72Google Scholar
[103] van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Weinfurter H 2022 Nature 607 69Google Scholar
[104] Enien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar
[105] Hensen B, Bernien H, Dréau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abellán C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H, Hanson R 2015 Nature 526 682Google Scholar
[106] Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F L, Twitchen D J 2018 Nature 558 268Google Scholar
[107] Delteil A, Sun Z, Gao W, Togan E, Faelt S, Imamoǧlu A 2016 Nat. Phys. 12 218Google Scholar
[108] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar
[109] Yu Y, Ma F, Luo X Y, Jing B, Sun P F, Fang R Z, Pan J W 2020 Nature 578 240Google Scholar
[110] Zhou Z Q, Lin W B, Yang M, Li C F, Guo G C 2012 Phys. Rev. Lett. 108 190505Google Scholar
[111] Seri A, Lenhard A, Rieländer D, Gündoǧan M, Ledingham P M, Mazzera M, de Riedmatten H 2017 Phys. Rev. X 7 021028Google Scholar
[112] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar
[113] Su K, Wang Y, Zhang S, Kong Z, Zhong Y, Li J, Zhu S L 2021 Chin. Phys. Lett. 38 094202Google Scholar
[114] Meyer-Scott E, Prasannan N, Dhand I, Eigner C, Quiring V, Barkhofen S, Silberhorn C 2022 Phys. Rev. Lett. 129 150501Google Scholar
[115] Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Lukin M D 2020 Nature 580 60Google Scholar
[116] Pu Y F, Zhang S, Wu Y K, Jiang N, Chang W, Li C, Duan L M 2021 Nat. Photonics 15 374Google Scholar
[117] Zhang S, Wu Y K, Li C, Jiang N, Pu Y F, Duan L M 2022 Phys. Rev. Lett. 128 080501Google Scholar
[118] Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar
[119] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar
[120] Kok P , Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135Google Scholar
[121] Okamoto R, O’Brien J L, Hofmann H F, Takeuchi S 2011 Proc. Natl. Acad. Sci. 108 10067Google Scholar
[122] Bouchard F, Sit A, Zhang Y W, Fickler R, Miatto F M, Yao Y, Sciarrino F, Karimi E 2021 Rep. Prog. Phys. 84 012402Google Scholar
[123] Li J, Zhou M T, Jing B, Wang X J, Yang S J, Jiang X, Molmer K, Bao X H, Pan J W 2016 Phys. Rev. Lett. 117 180501Google Scholar
[124] Fakonas J S, Lee H, Kelaita Y A, Atwater H A 2014 Nat. Photonics 8 317Google Scholar
[125] Lopes R, Imanaliev A, Aspect A, Cheneau M, Boiron D, Westbrook C I 2015 Nature 520 66Google Scholar
[126] Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R A, Rey A M, Regal C A 2014 Science 345 306Google Scholar
[127] Wen R, Zou C L, Zhu X, Chen P, Ou Z Y, Chen J F, Zhang W 2019 Phys. Rev. Lett. 122 253602Google Scholar
[128] Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A, Chen J F 2022 Phys. Rev. Lett. 128 083605Google Scholar
[129] Su K Y, Zhong Y, Zhang S C, Li J F, Zou C L, Wang Y F, Yan H, Zhu S L 2022 Phys. Rev. Lett. 129 093604Google Scholar
-
图 1 (a)吸收型量子存储过程及能级方案. 单光子源产生的光子编码量子信息后, 输入进存储介质中. 待光子完全进入介质, 通过调控控制场将光子信息转化成原子自旋信息, 随后再次调控控制光场恢复光子信息并读取出来. (b) DLCZ型量子存储过程及能级方案. 一束写入激光对原子系综进行单激发, 同时释放一个斯托克斯光子, 随后一束读取激光再次作用到单激发介质上, 释放一个反斯托克斯光子. 两个光子之间的时间延迟可以通过操控写入和读取光的相对时间来控制
Figure 1. The absorptive quantum memory and energy level scheme. The photons generated by the single photon source encode quantum information and are input into the storage medium. After the photons have completely entered the medium, the light quantum information is converted into atomic spin wave by manipulating the control field, and then the light quantum information is read out again by manipulating the control field. (b) DLCZ quantum memory and energy level scheme. A writing laser beam couple the atomic ensemble and simultaneously releases a Stokes photon, and then a reading laser beam couple the medium again to release an anti-Stokes photon. The time delay between two photons can be controlled by manipulating the relative timing of writing and reading laser.
图 2 单光子量子存储的实验装置和能级方案 (a)实验方案. 磁光阱1 制备的冷原子系综用于制备时间-频率纠缠光子对, 磁光阱2 制备的冷原子系综用于进行光量子态存储. 磁光阱1 中产生的反斯托克斯光子经半波片和四分之一波片编码成任意偏振态, 然后经过一个偏振光束位移器将其偏振态的两个正交分量H偏振和V偏振分别转换成两条路径信息CHH和CHV. 读取后的光子再次经过反置的偏振光束位移换器重构出偏振态, 随后进行偏振量子态层析. (b)存储过程中的时序及优化后的控制光调制示意. (c)基于电磁诱导透明量子存储的原子能级方案. (d)当水平偏振的输入通道
$|H\rangle$ 具有最优存储效率时, 其输入、EIT慢光以及读取单光子的时域波形情况. (e)光学厚度对存储效率的影响情况. 图中的线均是基于实验采集数据进行的理论拟合, 理论拟合采用的波形为高斯函数. 红色实线表示在存储窗口期间修改控制光的强度以匹配光学深度变化的存储数据, 黑色虚线表示控制光的强度恒定时的数据[34]Figure 2. Experimental set-up and energy level scheme of the single-photon quantum memory. (a) Schematic of the experimental optical set-up. The cold atoms in the first magneto-optical trap (MOT1) serve as a nonlinear optical medium for producing time-frequency entangled photon pairs, while the cold atoms in the second magneto-optical trap (MOT21) are the medium for the quantum memory. The anti-Stokes photon is coded with an arbitrary polarization state through the qubit manipulation unit (QMU) consisting of a QWP and HWP. After the QMU, the two orthogonal linear polarizations are separated into two beams by a polarization beam displacer (BD) that are coupled into the two balanced spatial channels CHH and CHV of the quantum memory. The memory read-outs are recombined at the second BD and the polarization state is measured by the qubit analyser. (b) The memory operation timing shows the MOT sequence and the optimized control laser intensity time-varying profile in each experimental cycle. (c) The atomic energy level scheme of the quantum memory based on EIT. (d) The input, EIT delayed and retrieved temporal waveforms of the heralded single photons when the quantum memory is optimized for the horizontally polarized input optical channel
$|H\rangle$ . (e) The storage efficiency as a function of the optical depth of the quantum memory. The solid lines are the best fitted theoretical waveforms by fitting the input waveform using a Gaussian function and then numerically calculating the retrieved waveform based on the measured experimental parameters of the quantum memory. The red line denotes the situation when the intensity of the control light is modified to match the optical depth change during the storage window and the black line denotes the result when the intensity of the control light is constant[34]图 3 存储效率与存储时间的调研与统计. 图中不同形状的起始点代表不同的存储介质, 其中五角星代表冷原子系综, 三角形代表热原子系综, 正方形代表固体掺杂离子体系. 图中数字对应参考文献序号. 不同线形代表着不同的存储方式, 其中蓝色实线代表相干光存储, 红色实线代表单光子存储, 红色虚线代表DLCZ型量子存储. 作为对比, 图中用灰色实线以及灰色阴影区域标出了1550 nm波长光纤的时间延迟效率, 这里光纤损耗按0.2 dB/km
Figure 3. Statistics on the storage efficiency and storage time. Different storage medium are distinguished by symbols. The star represents the cold atoms, the triangle represents the warm atoms, and the square represents the doped ion crystal. The numbers before the symbols is the reference of the corresponding works. Blue solid line represents coherent light memory, red solid line represents single photon memory, and red dotted line represents DLCZ quantum memory. The transmission of 1550 nm fiber delay line is plotted using solid gray lines with the loss of 0.2 dB/km.
图 4 (a)利用纠缠光子源和多模量子存储器实现量子中继的方案. 由于量子存储器可以支持同时存储多个光子脉冲, 因此量子纠缠源可以陆续地产生光子, 以节省量子纠缠建立的时间成本. 这里的源和多模量子存储器的组合相当于DLCZ型量子存储器, 但该中继方案具有多模式的功能优势[22]. (b)利用多模量子存储器和量子处理器分解2048位RSA整数的量子计算机体系结构. 研究表明, 在量子存储器支持2800万个空间模式和45个时间模式, 并且存储时间覆盖到2 h的情况下, 处理器只需要13436个物理量子位即可在177天内即可完成任务[66]
Figure 4. (a) Quantum repeater scheme using pair sources and multimode memories. The sources
$S_{i}$ can each emit a photon pair into a sequence of time bins. The multimode memories$M_{i}$ can store the sequential photons simultaneously. The combination of source and multimode quantum memory is equivalent to the DLCZ scheme, but with multimode functionality[22]. (b) The quantum computer architecture for factoring a 2048-bit RSA integer with multimode quantum memories and quantum processors. It is shown to be possible in 177 days with 13436 physical qubits and a memory that can store 28 million spatial modes and 45 temporal modes with 2 hours’ storage time[66].图 5 (a) 潘建伟等[109]借助高效率波长转换器实现了50 km光纤连接的两个DLCZ 量子存储纠缠; (b)李传锋等[56]首次实验演示吸收型量子存储之间的量子纠缠; (c) Riedmatten等[63]实现了两个多模固态量子存储之间的纠缠
Figure 5. (a) 50 km fiber length entanglement of two quantum memories via efficient quantum wavelength converter demonstrated by Pan et al.[109]; (b) experimental demonstration of quantum entanglement between absorbing quantum memories for the first time by Li et al.[56]; (c) experimental demonstration of quantum entanglement between multimode quantum memories by Riedmatten et al.[63].
图 6 光子同步干涉与相位调制实验方案. 采用暗线磁光阱技术制备三个雪茄形高密度铷85 冷原子系综. 在泵浦光和耦合光共同作用下, 于磁光阱1 (2)中采用四波混频的方法产生斯托克斯光子
$\omega_{{\rm{s}}1}$ ($\omega_{{\rm{s}}2}$ )和反斯托克斯光子$\omega_{{\rm{as}}1}$ ($\omega_{{\rm{as}}2}$ )纠缠光子对.$\Delta t_{{\rm{random}}} $ 表示反斯托克斯光子$\omega_{{\rm{as}}1}$ 和$\omega_{{\rm{as}}2}$ 之间的时间差. 磁光阱3是电磁诱导透明存储器, 用于控制$\omega_{{\rm{as}}2}$ 光子的时间延迟, 实现$\omega_{{\rm{as}}1}$ 和$\omega_{{\rm{as}}2}$ 光子的时间同步. 如电磁诱导透明过程能级示意图所示, 光子的存储、读取及相位调制过程完全由控制光决定, 实验上利用声光调制器(AOM)来实现. 同步后的$\omega_{{\rm{as}}1}$ 和$\omega_{{\rm{as}}2}$ 光子通过单模光纤传输到由分束器组成的HOM干涉仪中进行干涉, 最终被单光子计数模块A, B, C和D检测. PBS, 偏振分束器; HWP,半波片; QWP, 四分之一波片; HR, 高反射镜[113]Figure 6. Three cigar-shape dense cold atomic ensembles are prepared by dark-line magneto-optical traps (MOT) of
$^{85}$ Rb atoms. Single photons$\omega_{{\rm{as}}1}$ ($\omega_{{\rm{as}}2}$ ) heralded by its counterpart$\omega_{{\rm{s}}1}$ ($\omega_{{\rm{s}}2}$ ) are generated from MOT$_{1}$ (MOT$_{2}$ ) with the existence of pump1-coupling1 (pump2-coupling2) laser beams via the spontaneous four-wave-mixing process. Therefore, the timing differences between$\omega_{{\rm{as}}1}$ and$\omega_{{\rm{as}}2}$ are random and denoted by$\Delta t_{{\rm{random}}}$ . MOT3 acts as an efficient QM based on EIT that can synchronize the readout single photon$\omega_{{\rm{as}}2}$ to$\omega_{{\rm{as}}1}$ ($\Delta t=0$ ). As shown by the energy level schematics of EIT two-photon process, a control laser manipulates the storage and readout of single photons$\omega_{{\rm{as}}2}$ . The amplitude and phase of the control laser pulse with a complex envelope of Rabi frequency$\Omega_{{\rm{c}}}(t){\rm{e}}^{-{\rm{i}}\phi_{{\rm{c}}}(t)}$ is controlled by an acousto-optic modulator (AOM), by which the readout single photons$\omega_{{\rm{as}}2}$ can be phase modulated accordingly. Single photons$\omega_{{\rm{as}}1}$ and$\omega_{{\rm{as}}2}$ are delivered to a HOM interferometer consisting of a beam splitter (BS) via single mode fibers (SMFs). Photons$\omega_{{\rm{s}}1}$ and$\omega_{{\rm{s}}2}$ are also collected and sent to detectors via SMFs. The generated photons are eventually detected by single photon counting modules (SPCMs) A, B, C and D. Filters are inserted before SPCMs to filter out noisy photons. PBS, polarization beam splitter; HWP, half wave plate; QWP, quarter wave plate; HR, high reflection mirror[113].图 7 单磁子与单光子干涉实验方案 (a)磁子-光子HOM干涉仪的理论模型. 磁子
$\widehat{\sigma}_{21}$ 和光子$\widehat{E}$ 在电磁诱导透明介质中都以暗态极化子的形式存在. 控制光上方的红线显示了实验的时序, 包括磁子的制备$\varOmega_{{\rm{S}}}$ 、磁子与光子的干涉$\varOmega_{{\rm{BS}}}$ 和磁子的读取$\varOmega_{{\rm{R}}}$ 三个过程. 该电磁诱导透明过程的铷85能级方案:$|1\rangle=5 {\rm{S}}_{1/2}, F=2, m_{F}=2$ ,$|2\rangle=5 {\rm{S}}_{1/2}, F=3, m_{F}=3$ ,$|3\rangle=5 P_{1/2}, F=3, $ $ m_{F}=3$ ,$\varGamma_{3}$ 是$|3\rangle$ 态的自发辐射率, Δ是单光子失谐. (b)磁子和光子HOM干涉的输入和输出态. (c)实验方案. 磁光阱1作为单光子源连续产生单光子, 通过探测斯托克斯光子可宣布反斯托克斯光子的产生. 磁光阱2作为非厄米分束器用于实现光子- 磁子的分束及干涉. PBS, 偏振分束器; QWP, 四分之一波片; SPCM, 单光子计数模块; SMF, 单模光纤[129]Figure 7. Theoretical and experimental schemes: (a) Theoretical scheme of magnon-photon HOM interferometer. The magnon (
$\hat{\sigma}$ ) and photon ($\hat{E}$ ) are both in the form of a dark-state polariton (DSP) in an electromagnetically induced transparency (EIT) medium. The red line above the control laser shows the experimental timing sequences: storage of a magnon ($\varOmega _{\rm{S}}$ ), interference between two DSPs ($\varOmega _{{\rm{BS}}}$ ) and reading out of the magnon ($\varOmega _{\rm{R}}$ ). The insert is a$\Lambda$ -type EIT energy diagram:$|1\rangle = |5{{\rm{S}}_{1/2}}, $ $ F = 2, {m_F} = 2\rangle$ ,$|2\rangle = |5{{\rm{S}}_{1/2}}, F = 3, {m_F} = 2\rangle$ ,$|3\rangle = |5{P_{1/2}}, F = 3, {m_F} = 3\rangle$ ,$\varGamma_{3}$ is the spontaneous decay rate of$|3\rangle$ , and$\varDelta$ is single photon detuning. (b) The input and output states of the magnon-photon HOM interferometer. (c) Experimental setup. MOT$_{1}$ is a single photon source. The detection of a Stokes photon ($\omega_{{\rm{s}}i}$ ) heralded the generation of an anti-Stokes photon ($\omega_{{\rm{as}}i}$ ). MOT$_{2}$ is the non-Hermitian beam splitter. PBS, polarization beam splitter; QWP, quarter wave plate; SPCM, single photon counting module; SMF, single mode fibre[129]. -
[1] Walmsley I A 2015 Science 348 525Google Scholar
[2] Wootters W K, Zurek W H 1982 Nature 299 802Google Scholar
[3] Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar
[4] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar
[5] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar
[6] Gisin N, Ribordy G, Tittel W, Zbinde H 2002 Rev. Mod. Phys. 74 145Google Scholar
[7] Foot C J 2005 Atomic Physics (Oxford: Oxford University Press) pp123–214 Foot C J 2005 Atomic Physics (Oxford: Oxford University Press) pp123–214
[8] Scully M O, Zubairy M S 1999 Quantum Optics (New York: Cambridge University Press) pp145–217 Scully M O, Zubairy M S 1999 Quantum Optics (New York: Cambridge University Press) pp145–217
[9] Nielsen, Michael A, I L Chuang 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition (New York: Cambridge University Press) pp277–343 Nielsen, Michael A, I L Chuang 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition (New York: Cambridge University Press) pp277–343
[10] Hammerer K, SØrensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041Google Scholar
[11] Kimble H J 2008 Nature 453 1023Google Scholar
[12] Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar
[13] 郭光灿 2020 中国科学: 信息科学 50 1395Google Scholar
Guo G C 2020 Sci. Sin. Inform. 50 1395Google Scholar
[14] Simon C 2017 Nat. Photonics 11 678Google Scholar
[15] Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar
[16] Yan Z H, Wu L, Jia X J, Xie C D, Peng K C 2021 Adv. Quantum Technol. 4 2100071Google Scholar
[17] Afzelius M, Gisin N, De Riedmatten H 2015 Phys. Today 68 42Google Scholar
[18] Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar
[19] Bussieres F, Sangouard N, Afzelius M, De Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar
[20] Guo M C, Liu S P, Sun W Y, Ren M M, Wang F D, Zhong M J 2023 Front. Phys. 18 21303Google Scholar
[21] Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar
[22] Simon C, De Riedmatten H, Afzelius M, Sangouard N, Zbinden H, Gisin N 2007 Phys. Rev. Lett. 98 190503Google Scholar
[23] Chou C W, Laurat J, Deng H, Choi K, De Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316Google Scholar
[24] Wei S H, Jing B, Zhang X Y, Liao J Y, Yuan C Z, Fan B Y, Lyu C, Zhou D L, Wang Y, Deng G W, Song H Z, Oblak D, Guo G C, Zhou Q 2022 Laser Photon. Rev. 16 2100219Google Scholar
[25] Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Walmsley I A 2013 Phys. Rev. Lett. 110 133601Google Scholar
[26] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar
[27] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Walmsley I A 2010 Nat. Photonics 4 218Google Scholar
[28] Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603Google Scholar
[29] Michelberger P S, Champion T F M, Sprague M R, Kaczmarek K T, Barbieri M, Jin X M, Walmsley I A 2015 New J. Phys. 17 043006Google Scholar
[30] Guo J, Feng X, Yang P, Yu Z, Chen L Q, Yuan C H, Zhang W 2019 Nat. Commun. 10 148Google Scholar
[31] Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar
[32] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[33] Zhou S, Zhang S, Liu C, Chen J F, Wen J, Loy M M T, Du S 2012 Opt. Express 20 24124Google Scholar
[34] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar
[35] Cao M, Hoffet F, Qi S, Sheremet A S, Laurat J 2020 Optica 7 1440Google Scholar
[36] Davidson J H, Lefebvre P, Zhang J, Oblak D, Tittel W 2020 Phys. Rev. A 101 042333Google Scholar
[37] Akhmedzhanov R A, Gushchin L A, Kalachev A A, Nizov N A, Nizov V A, Sobgayda D A, Zelensky I V 2016 Laser Phys. Lett. 13 115203Google Scholar
[38] Jobez P, Usmani I, Timoney N, Laplane C, Gisin N, Afzelius M 2014 New J. Phys. 16 083005Google Scholar
[39] Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar
[40] Schraft D, Hain M, Lorenz N, Halfmann T 2016 Phys. Rev. Lett. 116 073602Google Scholar
[41] Sabooni M, Kometa S T, Thuresson A, Kröll S, Rippe L 2013 New J. Phys. 15 035025Google Scholar
[42] Hain M, Stabel M, Halfmann T 2022 New J. Phys. 24 023012Google Scholar
[43] Dudin Y O, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801Google Scholar
[44] Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar
[45] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Sellars M J 2015 Nature 517 177Google Scholar
[46] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photonics 10 381Google Scholar
[47] Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Pan J W 2021 Phys. Rev. Lett. 126 090501Google Scholar
[48] Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381Google Scholar
[49] Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar
[50] Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar
[51] Horvath S P, Alqedra M K, Kinos A, Walther A, Dahlström J M, Stefan Kröll, Rippe L 2021 Phys. Rev. Research 3 023099Google Scholar
[52] Mazelanik M, Leszczyński A, Parniak M 2022 Nat. Commun. 13 691Google Scholar
[53] Li C, Zhang S, Wu Y K, Jiang N, Pu Y F, Duan L M 2021 Phys. Rev. X 2 040307Google Scholar
[54] Dideriksen K B, Schmieg R, Zugenmaier M, Polzik E S 2021 Nat. Commun. 12 3699Google Scholar
[55] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar
[56] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar
[57] Tian L, Xu Z, Chen L, Ge W, Yuan H, Wen Y, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar
[58] Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Guo G C 2022 Phys. Rev. Lett. 128 180501Google Scholar
[59] Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar
[60] Wei S H, Jing B, Zhang X Y, Liao J Y, Li H, You L X, Zhou Q 2022 arXiv: 2209.00802[quant-phGoogle Scholar
[61] Ortu A, Holzäpfel A, Etesse J, Afzelius M 2022 npj Quantum Inform. 8 29Google Scholar
[62] Saglamyurek E, Hrushevskyi T, Rastogi A, Cooke L W, Smith B D, LeBlanc L J 2021 New J. Phys. 23 043028Google Scholar
[63] Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, de Riedmatten H 2021 Nature 594 37Google Scholar
[64] Grosshans F, Grangier P 2001 Phys. Rev. A 64 010301Google Scholar
[65] Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar
[66] Gouzien É, Sangouard N 2021 Phys. Rev. Lett. 127 140503Google Scholar
[67] Afzelius M, Sangouard N, Johansson G, Staudt M U, Wilson C M 2013 New J. Phys. 15 065008Google Scholar
[68] Ma Y Z, Jin M, Chen D L, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 4378Google Scholar
[69] 周宗权 2022 物理学报 71 070305Google Scholar
Zhou Z Q 2022 Acta. Phys. Sin. 71 070305Google Scholar
[70] Mirhosseini M, Sipahigil A, Kalaee M, Painter O 2020 Nature 588 599Google Scholar
[71] Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhu S L 2022 Nat. Photonics 16 291Google Scholar
[72] Brubaker B M, Kindem J M, Urmey M D, Mittal S, Delaney R D, Burns P S, Regal C A 2022 Phys. Rev. X 12 021062Google Scholar
[73] Kumar A, Suleymanzade A, Stone M, Taneja L, Anferov A, Schuster D I, Simon J 2023 Nature 615 614Google Scholar
[74] Xu Y, Sayem A A, Fan L, Zou C L, Wang S, Cheng R, Tang H X 2021 Nat. Commun. 12 4453Google Scholar
[75] Gündoǧan M, Ledingham P M, Kutluer K, Mazzera M, De Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar
[76] Askarani M F, Das A, Davidson J H, Amaral G C, Sinclair N, Slater J A, Tittel W 2021 Phys. Rev. Lett. 127 220502Google Scholar
[77] Tiranov A, Strassmann P C, Lavoie J, Brunner N, Huber M, Verma V B, Gisin N 2016 Phys. Rev. Lett. 117 240506Google Scholar
[78] Saglamyurek E, Grimau Puigibert M, Zhou Q, Giner L, Marsili F, Verma V B, Tittel W 2016 Nat. Commun. 7 11202Google Scholar
[79] Kutluer K, Distante E, Casabone B, Duranti S, Mazzera M, de Riedmatten H 2019 Phys. Rev. Lett. 123 030501Google Scholar
[80] Seri A, Lago-Rivera D, Lenhard A, Corrielli G, Osellame R, Mazzera M, de Riedmatten H 2019 Phys. Rev. Lett. 123 080502Google Scholar
[81] Tu Y, Zhang G, Zhai Z, Xu J 2009 Phys. Rev. A 80 033816Google Scholar
[82] Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar
[83] Li X, Liu X, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. A 101 052330Google Scholar
[84] Businger M, Nicolas L, Mejia T S, Ferrier A, Goldner P, Afzelius M 2022 Nat. Commun. 13 6438Google Scholar
[85] Zhang X, Zhang B, Wei S, Li H, Liao J, Li C, Deng G, Wang Y, Song H, You L, Jing B, Chen F, Guo G, Zhou Q 2023 Sci. Adv. 9 eadf4587Google Scholar
[86] Veissier L, Nicolas A, Giner L, Maxein D, Sheremet A S, Giacobino E, Laurat J 2013 Opt. Lett. 38 712Google Scholar
[87] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar
[88] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar
[89] Ding D S, Zhang W, Shi S, Zhou Z Y, Li Y, Shi B S, Guo G C 2016 Light: Science & Applications 5 e16157Google Scholar
[90] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Guo G C 2016 Nat. Commun. 7 13514Google Scholar
[91] Wang C, Yu Y, Chen Y, Cao M, Wang J, Yang X, Li F 2021 Quantum Sci. Technol. 6 045008Google Scholar
[92] Ye Y H, Zeng L, Dong M X, Zhang W H, Li E Z, Li D C, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Lett. 129 193601Google Scholar
[93] Parigi V, D’Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar
[94] Lan S Y, Radnaev A G, Collins O A, Matsukevich D N, Kennedy T A B, Kuzmich A 2009 Opt. Express 17 13639Google Scholar
[95] Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar
[96] Chang W, Li C, Wu Y K, Jiang N, Zhang S, Pu Y F, Duan L M 2019 Phys. Rev. X 9 041033Google Scholar
[97] Chrapkiewicz R, Dabrowski M, Wasilewski W 2017 Phys. Rev. Lett. 118 063603Google Scholar
[98] Wen Y, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar
[99] Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar
[100] Chou C W, De Riedmatten H, Felinto D, Polyakov S V, Van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar
[101] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar
[102] Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, Weinfurter H 2012 Science 337 72Google Scholar
[103] van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Weinfurter H 2022 Nature 607 69Google Scholar
[104] Enien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar
[105] Hensen B, Bernien H, Dréau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abellán C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H, Hanson R 2015 Nature 526 682Google Scholar
[106] Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F L, Twitchen D J 2018 Nature 558 268Google Scholar
[107] Delteil A, Sun Z, Gao W, Togan E, Faelt S, Imamoǧlu A 2016 Nat. Phys. 12 218Google Scholar
[108] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar
[109] Yu Y, Ma F, Luo X Y, Jing B, Sun P F, Fang R Z, Pan J W 2020 Nature 578 240Google Scholar
[110] Zhou Z Q, Lin W B, Yang M, Li C F, Guo G C 2012 Phys. Rev. Lett. 108 190505Google Scholar
[111] Seri A, Lenhard A, Rieländer D, Gündoǧan M, Ledingham P M, Mazzera M, de Riedmatten H 2017 Phys. Rev. X 7 021028Google Scholar
[112] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar
[113] Su K, Wang Y, Zhang S, Kong Z, Zhong Y, Li J, Zhu S L 2021 Chin. Phys. Lett. 38 094202Google Scholar
[114] Meyer-Scott E, Prasannan N, Dhand I, Eigner C, Quiring V, Barkhofen S, Silberhorn C 2022 Phys. Rev. Lett. 129 150501Google Scholar
[115] Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Lukin M D 2020 Nature 580 60Google Scholar
[116] Pu Y F, Zhang S, Wu Y K, Jiang N, Chang W, Li C, Duan L M 2021 Nat. Photonics 15 374Google Scholar
[117] Zhang S, Wu Y K, Li C, Jiang N, Pu Y F, Duan L M 2022 Phys. Rev. Lett. 128 080501Google Scholar
[118] Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar
[119] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar
[120] Kok P , Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135Google Scholar
[121] Okamoto R, O’Brien J L, Hofmann H F, Takeuchi S 2011 Proc. Natl. Acad. Sci. 108 10067Google Scholar
[122] Bouchard F, Sit A, Zhang Y W, Fickler R, Miatto F M, Yao Y, Sciarrino F, Karimi E 2021 Rep. Prog. Phys. 84 012402Google Scholar
[123] Li J, Zhou M T, Jing B, Wang X J, Yang S J, Jiang X, Molmer K, Bao X H, Pan J W 2016 Phys. Rev. Lett. 117 180501Google Scholar
[124] Fakonas J S, Lee H, Kelaita Y A, Atwater H A 2014 Nat. Photonics 8 317Google Scholar
[125] Lopes R, Imanaliev A, Aspect A, Cheneau M, Boiron D, Westbrook C I 2015 Nature 520 66Google Scholar
[126] Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R A, Rey A M, Regal C A 2014 Science 345 306Google Scholar
[127] Wen R, Zou C L, Zhu X, Chen P, Ou Z Y, Chen J F, Zhang W 2019 Phys. Rev. Lett. 122 253602Google Scholar
[128] Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A, Chen J F 2022 Phys. Rev. Lett. 128 083605Google Scholar
[129] Su K Y, Zhong Y, Zhang S C, Li J F, Zou C L, Wang Y F, Yan H, Zhu S L 2022 Phys. Rev. Lett. 129 093604Google Scholar
Catalog
Metrics
- Abstract views: 3862
- PDF Downloads: 162
- Cited By: 0