Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic frequency comb optical memory in EuCl3·6H2O crystal

Li Zong-Feng Liu Duan-Cheng Zhou Zong-Quan Li Chuan-Feng

Citation:

Atomic frequency comb optical memory in EuCl3·6H2O crystal

Li Zong-Feng, Liu Duan-Cheng, Zhou Zong-Quan, Li Chuan-Feng
PDF
HTML
Get Citation
  • Quantum memory is a crucial component for the large-scale quantum networks. Rare-earth-ion doped crystals have been a promising candidate for the practical quantum memory because of its very long coherence time. However, doped ions cause unwanted lattice distortion, and consequently reduce the optical depth and the storage efficiency. The stoichiometric rare-earth crystals have low lattice distortion and high rare earth ion density, and thus are expected to enable high-efficiency storage. EuCl3·6H2O is a promising material for quantum memory applications because its optical inhomogeneous broadening can be smaller than its hyperfine splitting and the theoretically predicted spin coherence time is up to 1000 seconds. Despite the numerous efforts in solid-state quantum memory based on rare-earth ion doped crystals, optical memory and quantum memory have not been implemented with stoichiometric rare-earth crystals yet. Here, we report the atom frequency comb optical storage using a EuCl3·6H2O crystal. A coherence time of 55.7 μs is obtained by photon echo measurements on $^7{\rm{F}}_0 \rightarrow {}^5{\rm{D}}_0$ transition. The two-level atomic frequency comb storage is demonstrated with a storage efficiency of 1.71% at a storage time of 1 μs, showing the potential capability of optical quantum storage of this material. Based on the analysis of the line shift of $^7{\rm{F}}_0 \rightarrow {}^5{\rm{D}}_0$ depending on the sample temperature, we highlight the challenge of achieving high-efficiency optical pumping in this material, which imposes a limit on the achievable efficiency.
      Corresponding author: Zhou Zong-Quan, zq_zhou@ustc.edu.cn ; Li Chuan-Feng, cfli@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304100)
    [1]

    Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [2]

    Briegel H J, Dür W, Cirac J, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [3]

    Yu Y, Ma F, Luo X Y, Jing B, Pan J W 2020 Nature 578 240Google Scholar

    [4]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [5]

    Corzo N V, Raskop J, Chandra A, Sheremet A S, Gouraud B 2019 Nature 566 359Google Scholar

    [6]

    Ritter S, Nolleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mucke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [7]

    Korber M, Morin O, Langenfeld S, Neuzner A, Ritter S, Rempe G 2018 Nat. Photonics 12 18Google Scholar

    [8]

    Kalb N, Reiserer A, Humphreys P C, Bakermans J J W, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M, Hanson R 2017 Science 356 928Google Scholar

    [9]

    De Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773Google Scholar

    [10]

    Hedges M P, Longdell J J, Li Y, Sellars M J 2010 Nature 465 1052Google Scholar

    [11]

    Zhong M J, Hedges M P, Ahlefeldt R, Bartholomew J G, Beavan S, Wittig S M, Longdell J J, Sellars M 2015 Nature 517 177Google Scholar

    [12]

    Rancic M, Hedges M P, Ahlefeldt R L, Sellars M J 2018 Nat. Phys. 14 50Google Scholar

    [13]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381

    [14]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [15]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [16]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [17]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [18]

    Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A, George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603Google Scholar

    [19]

    Jobez P, Timoney N, Laplane C, Etesse J, Ferrier A, Goldner P, Gisin N, Afzelius M 2016 Phys. Rev. A 93 032327Google Scholar

    [20]

    Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Li C F, Guo G C 2015 Phys. Rev. Lett. 115 070502Google Scholar

    [21]

    Usmani I, Afzelius M, De Riedmatten H, Gisin N 2010 Nat. Commun. 1 12Google Scholar

    [22]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392Google Scholar

    [23]

    Seri A, Lagorivera D, Lenhard A, Corrielli G, Osellame R, Mazzera M, De Riedmatten H 2019 Phys. Rev. Lett. 123 080502Google Scholar

    [24]

    Liu C, Zhou Z Q, Zhu T X, Zheng L, Jin M, Liu X, Li P Y, Huang J Y, Ma Y, Tu T, Yang T S, Li C F, Guo G C 2020 Optica 7 192Google Scholar

    [25]

    Lauritzen B, Minar J, De Riedmatten H, Afzelius M, Sangouard N, Simon C, Gisin N 2010 Phys. Rev. Lett. 104 080502Google Scholar

    [26]

    Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong T, Sinclair N, Faraon A 2019 Phys. Rev. Appl. 12 024062Google Scholar

    [27]

    Puigibert M L G, Saglamyurek E, Tittel W, Jin J, Verma V, Marsili F, Nam S W, Oblak D 2015 Phys. Rev. Lett. 115 140501Google Scholar

    [28]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [29]

    Gundogan M, Ledingham P M, Kutluer K, Mazzera M, de Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar

    [30]

    Afzelius M, Usmani I, Amari A, Lauritzen B, Walther A, Simon C, Sangouard N, Minar J, de Riedmatten H, Gisin N, Kroll S 2010 Phys. Rev. Lett. 104 040503Google Scholar

    [31]

    Binnemans K 2015 Coord. Chem. Rev. 295 1Google Scholar

    [32]

    Ahlefeldt R L, Hutchison W D, Manson N B, Sellars M J 2013 Phys. Rev. B 88 184424Google Scholar

    [33]

    Ahlefeldt R, Hush M R, Sellars M 2016 Phys. Rev. Lett. 117 250504Google Scholar

    [34]

    Ahlefeldt R, Manson N B, Sellars M 2013 J. Lumin. 133 152Google Scholar

    [35]

    Ahlefeldt R, Zhong M, Bartholomew J G, Sellars M 2013 J. Lumin. 143 193Google Scholar

    [36]

    Ahlefeldt R L, Mcauslan D L, Longdell J J, Manson N B, Sellars M J 2013 Phys. Rev. Lett. 111 240501Google Scholar

    [37]

    Li Z F, Liu X, Yang T S, Ma Y, Zhou Z Q, Li C F 2021 Phys. Lett. A 399 127295Google Scholar

    [38]

    Afzelius M, Simon C, Riedmatten H D, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar

    [39]

    McCumber D E, Sturge M D 1963 J. Appl. Phys. 34 6Google Scholar

    [40]

    Könz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L, Macfarlane R M 2003 Phys. Rev. B 68 085109Google Scholar

  • 图 1  EuCl3·6H2O晶体, 厚度约2 mm, 虚线内为存储实验所用区域. 晶体的三个轴向标示在示意图中, C2轴沿晶体的[010]的方向

    Figure 1.  The EuCl3·6H2O crystal used in experiments, with the thickness of 2 mm. The dashed box indicates the area used in the experiment. Crystal’s axes are shown in the lower graph, with the C2 axis along [010] dirction.

    图 2  实验装置示意图. 激光器输出的580 nm激光被一个声光调制器(AOM 1)所调制, 并入射到低温系统内的晶体样品(Crystal)上. 输出光场被另一个声光调制器(AOM 2)所调制, 最终由探测器(PD)探测

    Figure 2.  Illustration of the experimental setup. The 580 nm laser is modulated by an acousto-optic modulator (AOM 1) and injected into the crystal sample which is cooled down to 3.5 K by a cryostat. The output laser beam is controlled by another AOM (AOM 2) and finally detected by a photodiode (PD).

    图 3  EuCl3·6H2O晶体的光子回波幅度随时间的衰减曲线. 拟合得到相干时间(T2)为(55.7 ± 2.3) μs

    Figure 3.  The decay curve of two-pulse photon echo amplitude with time in EuCl3·6H2O. The optical coherence time (T2) is (55.7 ± 2.3) μs by fitting the data to a single exponential decay.

    图 4  (a) 153Eu3+离子能级结构; (b)在偏离中心频率位置上制备的AFC结构, 其频率中心为517.14873 THz, 插图为放大的AFC光谱结构

    Figure 4.  (a) The energy diagram of 153Eu3+. Three beams with center frequency of $f_1$, $f_2$ and $f_3$ are applied in a certain sequence to accomplish the spectral-hole burning for AFC preparation. (b) The prepared AFC structure with the center frequency is 517.14873 THz. Inset: enlarged view of the AFC structure.

    图 5  (a) AFC光存储1 μs结果, 存储1 μs时的效率为$(1.71\pm 0.04)\%$, 与根据图4(b)得到的AFC参数理论计算值$(1.75\pm 0.11)\%$相符; (b)存储时间为0.5—10 μs时AFC存储效率变化, 由四次测量数据平均得到

    Figure 5.  (a) The AFC memory with a storage time of 1 μs. The storage efficiency at 1 μs is $(1.71\pm 0.04)\%$, which agrees with the theoretical efficiency of $(1.75\pm 0.11)\%$, estimated from the AFC structure shown in Fig.4(b). (b) The storage efficiency with storage time from 0.5 μs to 10 μs. Each data point is averaged by four measurements.

    图 6  温度导致的$^7{\rm{F}}_0 \rightarrow {}^5{\rm{D}}_0$跃迁频率偏移及理论拟合

    Figure 6.  The line shift of $^7{\rm{F}}_0 \rightarrow {}^5{\rm{D}}_0$ depending on the sample temperature. The curve is fitted using two-phonon Raman-process model[39,40], giving $\alpha = (4.22 \pm 0.57)\;{\rm{cm}}^{-1}$ and $T_{\rm D} = (144.1 \pm 6.2)\;{\rm{K}}$ for this crystal.

  • [1]

    Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [2]

    Briegel H J, Dür W, Cirac J, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [3]

    Yu Y, Ma F, Luo X Y, Jing B, Pan J W 2020 Nature 578 240Google Scholar

    [4]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [5]

    Corzo N V, Raskop J, Chandra A, Sheremet A S, Gouraud B 2019 Nature 566 359Google Scholar

    [6]

    Ritter S, Nolleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mucke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [7]

    Korber M, Morin O, Langenfeld S, Neuzner A, Ritter S, Rempe G 2018 Nat. Photonics 12 18Google Scholar

    [8]

    Kalb N, Reiserer A, Humphreys P C, Bakermans J J W, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M, Hanson R 2017 Science 356 928Google Scholar

    [9]

    De Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773Google Scholar

    [10]

    Hedges M P, Longdell J J, Li Y, Sellars M J 2010 Nature 465 1052Google Scholar

    [11]

    Zhong M J, Hedges M P, Ahlefeldt R, Bartholomew J G, Beavan S, Wittig S M, Longdell J J, Sellars M 2015 Nature 517 177Google Scholar

    [12]

    Rancic M, Hedges M P, Ahlefeldt R L, Sellars M J 2018 Nat. Phys. 14 50Google Scholar

    [13]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381

    [14]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [15]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [16]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [17]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [18]

    Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A, George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603Google Scholar

    [19]

    Jobez P, Timoney N, Laplane C, Etesse J, Ferrier A, Goldner P, Gisin N, Afzelius M 2016 Phys. Rev. A 93 032327Google Scholar

    [20]

    Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Li C F, Guo G C 2015 Phys. Rev. Lett. 115 070502Google Scholar

    [21]

    Usmani I, Afzelius M, De Riedmatten H, Gisin N 2010 Nat. Commun. 1 12Google Scholar

    [22]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392Google Scholar

    [23]

    Seri A, Lagorivera D, Lenhard A, Corrielli G, Osellame R, Mazzera M, De Riedmatten H 2019 Phys. Rev. Lett. 123 080502Google Scholar

    [24]

    Liu C, Zhou Z Q, Zhu T X, Zheng L, Jin M, Liu X, Li P Y, Huang J Y, Ma Y, Tu T, Yang T S, Li C F, Guo G C 2020 Optica 7 192Google Scholar

    [25]

    Lauritzen B, Minar J, De Riedmatten H, Afzelius M, Sangouard N, Simon C, Gisin N 2010 Phys. Rev. Lett. 104 080502Google Scholar

    [26]

    Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong T, Sinclair N, Faraon A 2019 Phys. Rev. Appl. 12 024062Google Scholar

    [27]

    Puigibert M L G, Saglamyurek E, Tittel W, Jin J, Verma V, Marsili F, Nam S W, Oblak D 2015 Phys. Rev. Lett. 115 140501Google Scholar

    [28]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [29]

    Gundogan M, Ledingham P M, Kutluer K, Mazzera M, de Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar

    [30]

    Afzelius M, Usmani I, Amari A, Lauritzen B, Walther A, Simon C, Sangouard N, Minar J, de Riedmatten H, Gisin N, Kroll S 2010 Phys. Rev. Lett. 104 040503Google Scholar

    [31]

    Binnemans K 2015 Coord. Chem. Rev. 295 1Google Scholar

    [32]

    Ahlefeldt R L, Hutchison W D, Manson N B, Sellars M J 2013 Phys. Rev. B 88 184424Google Scholar

    [33]

    Ahlefeldt R, Hush M R, Sellars M 2016 Phys. Rev. Lett. 117 250504Google Scholar

    [34]

    Ahlefeldt R, Manson N B, Sellars M 2013 J. Lumin. 133 152Google Scholar

    [35]

    Ahlefeldt R, Zhong M, Bartholomew J G, Sellars M 2013 J. Lumin. 143 193Google Scholar

    [36]

    Ahlefeldt R L, Mcauslan D L, Longdell J J, Manson N B, Sellars M J 2013 Phys. Rev. Lett. 111 240501Google Scholar

    [37]

    Li Z F, Liu X, Yang T S, Ma Y, Zhou Z Q, Li C F 2021 Phys. Lett. A 399 127295Google Scholar

    [38]

    Afzelius M, Simon C, Riedmatten H D, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar

    [39]

    McCumber D E, Sturge M D 1963 J. Appl. Phys. 34 6Google Scholar

    [40]

    Könz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L, Macfarlane R M 2003 Phys. Rev. B 68 085109Google Scholar

  • [1] Liang Peng-Jun, Zhu Tian-Xiang, Xiao Yi-Xin, Wang Yi-Yang, Han Yong-Jian, Zhou Zong-Quan, Li Chuan-Feng. Concentration dependence of the optical and spin inhomogeneous linewidth in Europium-doped yttrium orthosilicate crystals. Acta Physica Sinica, 2024, 73(10): 1-7. doi: 10.7498/aps.73.20240116
    [2] Li Juan, Liu Peng, Xiang Xiao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Effect of spatial walk-off on squeezing properties of quantum optical frequency combs. Acta Physica Sinica, 2023, 72(8): 084206. doi: 10.7498/aps.72.20222343
    [3] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [4] Li Li-Juan, Ming Fei, Song Xue-Ke, Ye Liu, Wang Dong. Review on entropic uncertainty relations. Acta Physica Sinica, 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [5] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [7] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [8] Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211803
    [9] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [10] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [11] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [12] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [13] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [14] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [15] An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei. Coherent manipulation of single collective excitations in a cold atomic ensemble. Acta Physica Sinica, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [16] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [17] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [18] Sun Ying, Zhao Shang-Hong, Dong Chen. Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica, 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [19] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
Metrics
  • Abstract views:  3866
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2021
  • Accepted Date:  11 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回