Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum steering based on cascaded four-wave mixing processes

Zhai Shu-Qin Kang Xiao-Lan Liu Kui

Citation:

Quantum steering based on cascaded four-wave mixing processes

Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui
PDF
HTML
Get Citation
  • Multipartite quantum steering is an important quantum resource and the basis of secure quantum communication network. Multipartite quantum steering can be generated by beam splitter networks, optical frequency comb systems and nonlinear processes. Different types of quantum steering will be produced by different projects. In this paper, we design two different schemes, i.e. series cascaded four-wave mixing and hybrid cascaded four-wave mixing, and based on these two schemes tripartite quantum steering and quinquepartite quantum steering are generated respectively. The steering characters among different users are quantified based on the covariance matrix. In theory, we investigate steering parameters among different modes created by two schemes versus the amplitude gain of four-wave mixing process. We find that one mode can steer the other two modes separately, but the other two modes cannot steer the one mode simultaneously. By comparing the steering characters of joint multimodes to a certain single mode with the individual mode to the single mode respectively, it can be seen that the steerability of the former is stronger than the latter in the whole gain region, and there exists only the steering of joint multimodes to a single mode in the partial gain region. More importantly, the steerability of joint multimodes to a single mode can be enhanced with the quantity of joint multimodes increasing. The results show that multiple types of quantum steering can be realized by using these two schemes, which are helpful in understanding the distribution of quantum steering in multipartite system and have important significance in practical secure quantum communication and quantum secret sharing.
      Corresponding author: Zhai Shu-Qin, xiaozhai@sxu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D121121), the National Natural Science Foundation of China (Grant Nos. 12074233, 91536222, 11674205), the National Basic Research Program of China (Grant No. 2016YFA0301404), the Higher Education Reform and Innovation Project of Shanxi Province, China (Grant No. J2017006), and the Postgraduate Education Reform Research Project of Shanxi Province, China (Grant No. 2020YJJG023)
    [1]

    Bell J S 1964 Physics 1 195Google Scholar

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [3]

    Jones S J, Wiseman H M, Doherty A C 2007 Phys. Rev. A 76 052116Google Scholar

    [4]

    Cavalcanti E G, Jones S J, Wiseman H M, Reid M D 2009 Phys. Rev. A 80 032112Google Scholar

    [5]

    Cavalcanti D, Skrzypczyk P 2017 Rep. Prog. Phys. 80 024001Google Scholar

    [6]

    Bowles J, Vértesi T, Quintino M T, Brunner N 2014 Phys. Rev. Lett. 112 200402Google Scholar

    [7]

    He Q Y, Gong Q H, Reid M D 2015 Phys. Rev. Lett. 114 060402Google Scholar

    [8]

    Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F, Schnabel R 2012 Nat. Photonics 6 596Google Scholar

    [9]

    Wollmann S, Walk N, Bennet A J, Wiseman H M, Pryde G J 2016 Phys. Rev. Lett. 116 160403Google Scholar

    [10]

    Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F, Guo G C 2016 Phys. Rev. Lett. 116 160404Google Scholar

    [11]

    Branciard C, Cavalcanti E G, Walborn S P, Scarani V, Wiseman H M 2012 Phys. Rev. A 85 010301(RGoogle Scholar

    [12]

    Walk N, Hosseini S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symulet T, Wiseman H M, Lam P K 2016 Optica 3 634Google Scholar

    [13]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar

    [14]

    Reid M D 2013 Phys. Rev. A 88 062338Google Scholar

    [15]

    He Q Y, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502Google Scholar

    [16]

    Chiu C Y, Lambert N, Liao T L, Nori F, Li C M 2016 npj Quantum Inf. 2 16020Google Scholar

    [17]

    Piani M, Watrous J 2015 Phys. Rev. Lett. 114 060404Google Scholar

    [18]

    Uola R, Costa A C S, Nguyen H C, Gühne O 2020 Rev. Mod. Phys. 92 015001Google Scholar

    [19]

    Xiang Y, Kogias I, Adesso G, He Q Y 2017 Phys. Rev. A 95 010101(RGoogle Scholar

    [20]

    Deng X W, Xiang Y, Tian C X, Adesso G, He Q Y, Gong Q H, Su X L, Xie C D, Peng K C 2017 Phys. Rev. Lett. 118 230501Google Scholar

    [21]

    Armstrong S, Meng W, Teh R Y, Gong Q H, He Q Y, Janousek J, Bachor H A, Reid M D, Ping K L 2015 Nat. Phys. 11 167Google Scholar

    [22]

    Cai Y, Xiang Y, Liu Y, He Q Y, Treps N 2020 Phys. Rev. Res. 2 032046(R)

    [23]

    Qin Z Z, Deng X W, Tian C X, Wang M H, Su X L, Xie C D, Peng K C 2017 Phys. Rev. A 95 052114Google Scholar

    [24]

    李思瑾 2020 博士学位论文(上海: 华东师范大学)

    Li S J 2020 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [25]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178Google Scholar

    [26]

    Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601Google Scholar

    [27]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [28]

    Shu C, Guo X X, Chen P, Loy M M T, Du S W 2015 Phys. Rev. A 91 043820Google Scholar

    [29]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [30]

    Kogias I, Lee A R, Ragy S, Adesso G 2015 Phys. Rev. Lett. 114 060403Google Scholar

    [31]

    Ji S W, Kim M S, Nha H 2015 J. Phys. A 48 135301Google Scholar

    [32]

    Reid M D 2013 Phys. Rev. A 88 062108Google Scholar

  • 图 1  (a)串联级联四波混频产生三组份导引示意图. ${\hat a_{{\rm{s0}}}}$是信号光注入; ${\hat a_{{\rm{v1}}}}$, ${\hat a_{{\rm{v2}}}}$是真空模; ${\rm{Pump}}$是泵浦光注入.(b)混合级联四波混频产生五组份导引示意图. ${\hat a_{{\rm{s0}}}}$是信号光注入; ${\hat a_{{\rm{v1}}}}$, ${\hat a_{{\rm{v2}}}}$, ${\hat a_{{\rm{v3}}}}$${\hat a_{{\rm{v4}}}}$是真空模; ${\rm{Pump}}$是泵浦光注入; ${G_i}$为相应的四波混频过程的振幅增益

    Figure 1.  (a) Schematic of generating tripartite steering using series four-wave mixing (FWM)processes.${\hat a_{{\rm{s0}}}}$ is the seed input;${\hat a_{{\rm{v1}}}}$ and ${\hat a_{{\rm{v2}}}}$ are the vacuum modes;${\rm{Pump}}$ is the pump input.(b)Schematic of generating quinquepartite steering using hybrid cascaded FWM processes.${\hat a_{{\rm{s0}}}}$ is the seed input;${\hat a_{{\rm{v1}}}}$, ${\hat a_{{\rm{v2}}}}$, ${\hat a_{{\rm{v3}}}}$ and ${\hat a_{{\rm{v4}}}}$ are the vacuum modes;${\rm{Pump}}$ is the pump input;${G_i}$ is the amplitude gain of the corresponding FWM processes.

    图 2  (a) $ {G_2} = 1.5$时(1 + 1)型导引参数随$ {G_1}$的变化; (b) $ {G_1} = 1.5$时(1 + 1)型导引参数随$ {G_2}$的变化

    Figure 2.  (a) The (1 + 1)-type steering parameters versus with $ {G_1}$ for fixed $ {G_2} = 1.5$; (b) the (1 + 1)-type steering parameters versus with $ {G_2}$ for fixed $ {G_1} = 1.5$.

    图 3  (a) ${G_2} = 1.5$时, (2 + 1)型导引参数随${G_1}$的变化; (b) ${G_2} = 1.5$时, (1 + 2)型导引参数随${G_1}$的变化; (c) ${G_1} = 1.5$时, (2 + 1)型导引参数随${G_2}$的变化; (d) ${G_1} = 1.5$时, (1 + 2)型导引参数随${G_2}$的变化

    Figure 3.  (a) The (2 + 1)-type steering parameter versus with ${G_1}$ for fixed ${G_2} = 1.5$; (b) the (1 + 2)-type steering parameter versus with ${G_1}$ for fixed ${G_2} = 1.5$; (c) the (2 + 1)-type steering parameter versus with ${G_2}$ for fixed ${G_1} = 1.5$; (d) the (1 + 2)-type steering parameter versus with ${G_2}$ for fixed ${G_1} = 1.5$.

    图 4  ${G_1} = {G_2} = {G_3} = 1.5$时, (2 + 1)型导引参数随${G_4}$的变化 (a) $\left( {{C_2}{D_2}} \right)$联合导引${E_2}$以及${C_2}$, ${D_2}$单独对${E_2}$的导引; (b)多种类型两模联合$ \left({A}_{2}{C}_{2}, {A}_{2}{D}_{2}, {B}_{2}{C}_{2}, {B}_{2}{D}_{2}\right)$导引${E_2}$

    Figure 4.  The (2 + 1)-type steering parameters versus with ${G_4}$ for fixed ${G_1} = 1.5$, ${G_2} = 1.5$, ${G_3} = 1.5$: (a) ${E_2}$ can be steered by $\left( {{C_2}{D_2}} \right)$ jointly and ${E_2}$ can be steered by ${C_2}$, ${D_2}$ individually; (b) ${E_2}$ can be steered by different modes combination $ \left({A}_{2}{C}_{2}, {A}_{2}{D}_{2}, {B}_{2}{C}_{2}, {B}_{2}{D}_{2}\right)$ jointly.

    图 5  ${G_1} = {G_2} = {G_3} = 1.5$时, (1 + 2)型导引参数随${G_4}$的变化 (a) ${E_2}$${A_2}$, ${D_2}$的导引以及${E_2}$$\left( {{A_2}{D_2}} \right)$联合的导引; (b) ${E_2}$${A_2}$, ${B_2}$的导引以及${E_2}$$\left( {{A_2}{B_2}} \right)$联合的导引

    Figure 5.  The (1 + 2)-type steering parameters versus with ${G_4}$ for fixed ${G_1} = 1.5$, ${G_2} = 1.5$, ${G_3} = 1.5$: (a) The steering from mode ${E_2}$ to individual ${A_2}$, ${D_2}$ and the group of them; (b) the steering from mode ${E_2}$ to individual ${A_2}$, ${B_2}$ and the group of them.

    图 6  ${G_1} = {G_2} = {G_3} = 1.5$时, (3 + 1)型、(1 + 3)型、(4 + 1)型以及(1 + 4)型导引参数随${G_4}$的变化关系 (a)$\left( {{A_2}{C_2}{D_2}} \right)$联合导引${E_2}$以及${A_2}$, ${C_2}$, ${D_2}$单独对${E_2}$的导引; (b)${E_2}$${A_2}$, ${C_2}$, ${D_2}$的导引以及${E_2}$$\left( {{A_2}{C_2}{D_2}} \right)$联合的导引; (c)$\left( {{A_2}{B_2}{C_2}{D_2}} \right)$联合导引${E_2}$以及${A_2}$, ${B_2}$, ${C_2}$, ${D_2}$单独对${E_2}$的导引; (d)${E_2}$${A_2}$, ${B_2}$, ${C_2}$, ${D_2}$的导引以及${E_2}$$\left( {{A_2}{B_2}{C_2}{D_2}} \right)$联合的导引

    Figure 6.  The (3 + 1)-type、(1 + 3)-type、(4 + 1)-type and(1 + 4)-type steering parameters versus with ${G_4}$ for fixed ${G_1} = 1.5$, ${G_2} = 1.5$, ${G_3} = 1.5$: (a)${E_2}$ can be steered by $\left( {{A_2}{C_2}{D_2}} \right)$ jointly and ${E_2}$ can be steered by ${C_2}$, ${D_2}$ individually; (b) the steering from mode ${E_2}$ to individual ${A_2}$, ${C_2}$, ${D_2}$ and the group of them; (c) ${E_2}$ can be steered by $\left( {{A_2}{B_2}{C_2}{D_2}} \right)$ jointly and ${E_2}$ can be steered by ${C_2}$, ${D_2}$ individually; (d) The steering from mode ${E_2}$ to individual ${A_2}$, ${B_2}$, ${C_2}$, ${D_2}$ and the group of them.

    图 7  ${G_1} = {G_2} = {G_3} = 1.5$时, 多模联合对${E_2}$的导引参数随${G_4}$变化的比较

    Figure 7.  Comparison of steering parameters of multimode combination for ${E_2}$ versus with ${G_4}$ for fixed ${G_1} = 1.5$, ${G_2} = 1.5$, ${G_3} = 1.5$.

  • [1]

    Bell J S 1964 Physics 1 195Google Scholar

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [3]

    Jones S J, Wiseman H M, Doherty A C 2007 Phys. Rev. A 76 052116Google Scholar

    [4]

    Cavalcanti E G, Jones S J, Wiseman H M, Reid M D 2009 Phys. Rev. A 80 032112Google Scholar

    [5]

    Cavalcanti D, Skrzypczyk P 2017 Rep. Prog. Phys. 80 024001Google Scholar

    [6]

    Bowles J, Vértesi T, Quintino M T, Brunner N 2014 Phys. Rev. Lett. 112 200402Google Scholar

    [7]

    He Q Y, Gong Q H, Reid M D 2015 Phys. Rev. Lett. 114 060402Google Scholar

    [8]

    Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F, Schnabel R 2012 Nat. Photonics 6 596Google Scholar

    [9]

    Wollmann S, Walk N, Bennet A J, Wiseman H M, Pryde G J 2016 Phys. Rev. Lett. 116 160403Google Scholar

    [10]

    Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F, Guo G C 2016 Phys. Rev. Lett. 116 160404Google Scholar

    [11]

    Branciard C, Cavalcanti E G, Walborn S P, Scarani V, Wiseman H M 2012 Phys. Rev. A 85 010301(RGoogle Scholar

    [12]

    Walk N, Hosseini S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symulet T, Wiseman H M, Lam P K 2016 Optica 3 634Google Scholar

    [13]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar

    [14]

    Reid M D 2013 Phys. Rev. A 88 062338Google Scholar

    [15]

    He Q Y, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502Google Scholar

    [16]

    Chiu C Y, Lambert N, Liao T L, Nori F, Li C M 2016 npj Quantum Inf. 2 16020Google Scholar

    [17]

    Piani M, Watrous J 2015 Phys. Rev. Lett. 114 060404Google Scholar

    [18]

    Uola R, Costa A C S, Nguyen H C, Gühne O 2020 Rev. Mod. Phys. 92 015001Google Scholar

    [19]

    Xiang Y, Kogias I, Adesso G, He Q Y 2017 Phys. Rev. A 95 010101(RGoogle Scholar

    [20]

    Deng X W, Xiang Y, Tian C X, Adesso G, He Q Y, Gong Q H, Su X L, Xie C D, Peng K C 2017 Phys. Rev. Lett. 118 230501Google Scholar

    [21]

    Armstrong S, Meng W, Teh R Y, Gong Q H, He Q Y, Janousek J, Bachor H A, Reid M D, Ping K L 2015 Nat. Phys. 11 167Google Scholar

    [22]

    Cai Y, Xiang Y, Liu Y, He Q Y, Treps N 2020 Phys. Rev. Res. 2 032046(R)

    [23]

    Qin Z Z, Deng X W, Tian C X, Wang M H, Su X L, Xie C D, Peng K C 2017 Phys. Rev. A 95 052114Google Scholar

    [24]

    李思瑾 2020 博士学位论文(上海: 华东师范大学)

    Li S J 2020 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [25]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178Google Scholar

    [26]

    Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601Google Scholar

    [27]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [28]

    Shu C, Guo X X, Chen P, Loy M M T, Du S W 2015 Phys. Rev. A 91 043820Google Scholar

    [29]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [30]

    Kogias I, Lee A R, Ragy S, Adesso G 2015 Phys. Rev. Lett. 114 060403Google Scholar

    [31]

    Ji S W, Kim M S, Nha H 2015 J. Phys. A 48 135301Google Scholar

    [32]

    Reid M D 2013 Phys. Rev. A 88 062108Google Scholar

  • [1] Ge Yun-Ran, Zheng Kang, Ding Chun-Ling, Hao Xiang-Ying, Jin Rui-Bo. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Physica Sinica, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [2] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [3] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [4] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [5] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [6] Cao Lei-Ming, Du Jin-Jian, Zhang Kai, Liu Sheng-Shuai, Jing Jie-Tai. Experimental generation of multimode quantum correlations between a conical probe and a conical conjugate based on a four-wave mixing process. Acta Physica Sinica, 2022, 71(16): 160306. doi: 10.7498/aps.71.20220081
    [7] Yu Sheng, Liu Huan-Zhang, Liu Sheng-Shuai, Jing Jie-Tai. Generation of quadripartite entanglement based on four-wave mixing process and linear beam splitter. Acta Physica Sinica, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [8] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [9] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [10] Liang Jian-Wu, Cheng Zi, Shi Jin-Jing, Guo Ying. Quantum secret sharing with quantum graph states. Acta Physica Sinica, 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [11] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [12] Wei Ke-Jin, Ma Hai-Qiang, Wang Long. A quantum secret sharing scheme based on two polarization beam splitters. Acta Physica Sinica, 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [13] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [14] Yin Juan, Qian Yong, Li Xiao-Qiang, Bao Xiao-Hui, Peng Cheng-Zhi, Yang Tao, Pan Ge-Sheng. High-dimensional entanglement for long distance quantum communication. Acta Physica Sinica, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [15] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [16] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] Sun Ying, Du Jian-Zhong, Qin Su-Juan, Wen Qiao-Yan, Zhu Fu-Chen. Quantum secret sharing with bidirectional authentication. Acta Physica Sinica, 2008, 57(8): 4689-4694. doi: 10.7498/aps.57.4689
    [18] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Single N-dimensional quNit quantum secret sharing. Acta Physica Sinica, 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
    [20] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
Metrics
  • Abstract views:  4819
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2020
  • Accepted Date:  09 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回