Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Continuous-variable quantum secret sharing with local local oscillator based on Kalman filter

LIAO Qin FEI Zhuo-Ying WANG Yi-Jun

Citation:

Continuous-variable quantum secret sharing with local local oscillator based on Kalman filter

LIAO Qin, FEI Zhuo-Ying, WANG Yi-Jun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In a practical continuous-variable quantum secret sharing system, the local oscillator transmitted via an insecure channel may be subject to security threats due to various targeted attacks. To address this problem, this paper proposes a continuous-variable quantum secret sharing scheme with local local oscillator, in which the local oscillator is generated locally at the trusted end without being sent by each user, thus completely plugging the relevant security loopholes. The scheme consists of three stages: preparation, where users generate Gaussian-modulated coherent states and reference signals; measurement, where the dealer performs heterodyne detection using the local local oscillator and reference phases; and post-processing, involving parameter estimation, phase compensation, and secure key extraction. On this basis, Kalman filter is utilized to estimate the minimum mean square error for each reference phase separately, reducing the phase drift estimation error and suppressing the phase measurement noise. Phase compensation methods for scalar Kalman filter and vector Kalman filter are developed respectively, where scalar KF requires additional block averaging for slow phase drift, while vector KF simultaneously models fast and slow drifts, enabling one-step compensation with minimized estimation errors. The excess noise of the filtered system including modulation noise, phase noise, photon leakage noise, and ADC quantization noise is modeled, with KF reducing phase measurement noise via dynamic gain optimization. Security bound against eavesdroppers and dishonest users is derived. Numerical simulations under practical parameters demonstrate significant improvements: vector KF achieves a maximum transmission distance of 82.6 km (vs. 67.3 km for block averaging) and supports 33 users (vs. 22), with excess noise reduced by 40% at 60 km. The scheme’s robustness is further validated under varying reference signal amplitudes, showing stable performance even with lower, minimizing interference with quantum signals. These results highlight the proposed scheme has significant advantages in terms of maximum transmission distance and maximum number of supported users, and has the potential to build adaptive KF algorithms for dynamic user scenarios and quantum machine learning integration.
  • [1]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [2]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162

    [3]

    Tyc T, Sanders B C 2002 Phys. Rev. A 65 042310

    [4]

    Lance A M, Symul T, Bowen W P, Tyc T, Sanders B C, Lam P K 2003 New J. Phys. 5 4

    [5]

    Liao Q, Xiao G, Xu C G, Xu Y, Guo Y 2020 Phys. Rev. A 102 032604

    [6]

    Kogias I, Xiang Y, He Q, Adesso G 2017 Phys. Rev. A 95 012315

    [7]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339

    [8]

    Wang Y, Jia B, Mao Y, Wu X, Guo Y 2020 Appl. Sci. 10 2411

    [9]

    Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410

    [10]

    Liao Q, Liu X, Ou B, Fu X 2023 IEEE Trans. Commun. 71 6051-6060

    [11]

    Liao Q, Wang Z, Liu H, Mao Y, Fu X 2022 Phys. Rev. A 106 022607

    [12]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 052309

    [13]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 062313

    [14]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 88 022339

    [15]

    Zhao Y, Zhang Y, Huang Y, Xu B, Yu S, Guo H 2018 J. Phys. B-At. Mol. Opt. Phy. 52 015501

    [16]

    Zheng Y, Huang P, Peng J Y, Zeng G H 2019 Information and Communications Technology and Policy 45 43 (in Chinese) [郑异, 黄鹏, 彭进业, 曾贵华 2019 信息通信技术与政策 45 43]

    [17]

    Liao Q, Huang L, Fei Z Y, Fu X Q 2025 Adv. Quantum Technol. 2400505

    [18]

    Kunz-Jacques S, Jouguet P 2015 Phys. Rev. A 91 022307

    [19]

    Mao Y, Huang W, Zhong H, Wang Y, Qin H, Guo Y, Huang D 2020 New J. Phys. 22 083073

    [20]

    Liao Q, Liu H, Gong Y, Wang Z, Peng Q, Guo Y 2022 Opt. Express 30 3876-3892

    [21]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009

    [22]

    Wang T, Huang P, Zhou Y, Liu W, Ma H, Wang S, Zeng G 2018 Opt. Express 26 2794-2806

    [23]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5 162

    [24]

    Marie A, Alléaume R 2017 Phys. Rev. A 95 012316

    [25]

    Wang H, Pi Y D, Huang W, Li Y, Shao Y, Yang J, Liu J L, Zhang C L, Zhang Y C, Xu B J 2020 Opt. Express 28 32882-32893

    [26]

    Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11

    [27]

    Huang B, Ma T T, Huang Y M, Peng Z M 2021 Laser Optoelectron. Prog. 58 1127001 (in Chinese) [黄彪, 麻甜甜, 黄永梅, 彭真明 2021 激光与光电子学进展 58 1127001]

    [28]

    Roy S, Petersen I R, Huntington E H 2015 New J. Phys. 17 063020

    [29]

    Liu X C, Wen J X, Li S B, Li H G, Sun S L 2023 Chin. J. Lasers 50 1412002-1412002 (in Chinese) [刘旭超, 温佳旭, 李少波, 李华贵, 孙时伦 2023 中国激光 50 1412002-1412002]

    [30]

    Shen T, Wang X, Chen Z, Tian H, Yu S, Guo H 2023 IEEE Photonics J. 15 1-9

    [31]

    Ren S, Kumar R, Wonfor A, Tang X, Penty R, White I 2019 JOSA B 36 B7-B15

    [32]

    Huang B, Huang Y M, Peng Z M 2019 Acta Opt. Sin. 39 1127001 (in Chinese) [黄彪, 黄永梅, 彭真明 2019 光学学报 39 1127001]

    [33]

    Roy S, Rehman O U, Petersen I R, Huntington E H 2014 European Control Con-ference p896-901

    [34]

    Wang T, Huang P, Wang S, Zeng G 2019 Opt. Express 27 26689-26700

    [35]

    Hajomer A A, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474

    [36]

    Su Y, Guo Y, Huang D 2019 Phys. Lett. A 383 2394-2399

    [37]

    Huang B, Huang Y, Peng Z 2020 Opt. Express 28 28727-28739

    [38]

    Zhong H, Ye W, Zuo Z, Huang D, Guo Y 2022 Opt. Express 30 5981-6002

    [39]

    Diamanti E, Leverrier A 2015 Entropy 17 6072-6092

    [40]

    Inoue T, Namiki S 2014 Opt. Express 22 15376-15387

    [41]

    Huang B, Huang Y, Peng Z 2019 Opt. Express 27 20621-20631

    [42]

    Shao Y, Pan Y, Wang H, Pi Y D, Li Y, Ma L, Zhang Y C, Huang W, Xu B J 2022 Entropy 24 992

    [43]

    Shao Y, Wang H, Pi Y D, Huang W, Li Y, Liu J L, Yang J, Zhang Y C, Xu B J 2021 Phys. Rev. A 104 032608

    [44]

    Kish S P, Villaseñor E, Malaney R, Mudge K A, Grant K J 2021 IEEE Interna-tional Conference on Communications p1-6

    [45]

    Shao Y, Li Y, Wang H, Pan Y, Pi Y D, Zhang Y C, Huang W, Xu B J 2022 Phys. Rev. A 105 032601

    [46]

    Wang T, Huang P, Zhou Y, Liu W, Zeng G 2018 Phys. Rev. A 97 012310

    [47]

    Huang P, Lin D K, Huang D, Zeng, G H 2015 Int. J. Theor. Phys. 54 2613-2622

    [48]

    Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012 Phys. Rev. A-Atom. Mol. Opt. Phy. 86 032309

    [49]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201

    [50]

    Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021 Npj Quantum Inf. 7 20

    [51]

    Sun Y H, Chen Z Y, Wang X Y, Yu S, Guo H 2025 Phys. Rev. Appl. 23(1) 014056

    [52]

    Oruganti A N, Derkach I, Filip R, Usenko V C 2025 Quantum Sci. Technol. 10 025023

    [53]

    Liu Y M, Jiang X Q, Dai J S, Hai H, Huang P 2025 Quantum Sci. Technol. 10 025043

    [54]

    Liao Q, Fei Z Y, Huang L, Fu X Q 2025 Commun. Phys. 8(1) 138

    [55]

    Ren S, Yang S, Wonfor A, White I, Penty R 2021 Sci. Rep. 11 9454

    [56]

    Soh D B, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J, Sarovar M 2015 Phys. Rev. X 5 041010

    [57]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A-Atom. Mol. Opt. Phy. 76 042305

    [58]

    Rui X, He H W, Sun F C, Zhao K 2013 IEEE Trans. Veh. Technol. 62(1) 108-117

    [59]

    Liao Q, Fei Z Y, Liu J Y, Huang A Q, Huang L, Wang Y J 2025 Chaos Soliton. Fract. 196 116331

  • [1] He Ying, Wang Tian-Yi, Li Ying-Ying. Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.73.20241094
    [2] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, doi: 10.7498/aps.73.20230138
    [3] Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying. Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation. Acta Physica Sinica, doi: 10.7498/aps.71.20221072
    [4] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, doi: 10.7498/aps.71.20212341
    [5] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, doi: 10.7498/aps.71.20220635
    [6] Zhong Hai, Ye Wei, Wu Xiao-Dong, Guo Ying. Optical preamplifier based simultaneous quantum key distribution and classical communication scheme. Acta Physica Sinica, doi: 10.7498/aps.70.20200855
    [7] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, doi: 10.7498/aps.70.20201981
    [8] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, doi: 10.7498/aps.70.20202073
    [9] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, doi: 10.7498/aps.69.20191689
    [10] Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li. Continuous variable polarization entanglement in microwave domain. Acta Physica Sinica, doi: 10.7498/aps.68.20181911
    [11] Liang Jian-Wu, Cheng Zi, Shi Jin-Jing, Guo Ying. Quantum secret sharing with quantum graph states. Acta Physica Sinica, doi: 10.7498/aps.65.160301
    [12] Wei Ke-Jin, Ma Hai-Qiang, Wang Long. A quantum secret sharing scheme based on two polarization beam splitters. Acta Physica Sinica, doi: 10.7498/aps.62.104205
    [13] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, doi: 10.7498/aps.62.070301
    [14] Yan Zhi-Hui, Jia Xiao-Jun, Xie Chang-De, Peng Kun-Chi. Continuous-variable three-color tripartite entangled state generated by a non-degenerate optical parameter oscillator. Acta Physica Sinica, doi: 10.7498/aps.61.014206
    [15] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, doi: 10.7498/aps.61.154206
    [16] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, doi: 10.7498/aps.58.2184
    [17] Sun Ying, Du Jian-Zhong, Qin Su-Juan, Wen Qiao-Yan, Zhu Fu-Chen. Quantum secret sharing with bidirectional authentication. Acta Physica Sinica, doi: 10.7498/aps.57.4689
    [18] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.56.5
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Single N-dimensional quNit quantum secret sharing. Acta Physica Sinica, doi: 10.7498/aps.55.3255
    [20] Li Jun, Liu Jun-Hua. On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica, doi: 10.7498/aps.54.4569
Metrics
  • Abstract views:  78
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  12 June 2025

/

返回文章
返回