Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution

He Ying Wang Tian-Yi Li Ying-Ying

Citation:

Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution

He Ying, Wang Tian-Yi, Li Ying-Ying
cstr: 32037.14.aps.73.20241094
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In experimental setups of continuous-variable quantum key distribution (CVQKD) independently modulating the amplitude and phase of coherent states, the ideal Gaussian modulation will be degraded into discretized polar modulation (DPM) due to the finite resolution of the driving voltages of electro-optical modulators. To compensate for the performance degradation induced by the joint effect of amplitude and phase discretization, linear optics cloning machine (LOCM) can be introduced on the receiver side. Implemented by linear optical elements, heterodyne detection and controlled displacement, LOCM introduces extra noise that can be transformed into an advantageous one to combat channel excess noise by dynamically adjusting the relevant parameters into a suitable range. In this paper, the prepare-and-measure version of LOCM DPM-CVQKD is presented, where the incoming signal state enters a tunable LOCM before being measured by the nonideal heterodyne detector. The equivalent entanglement-based model is also established to perform security analysis, where the LOCM is reformulated into combination of the incoming signal state and a thermal state on a beam splitter. The composable secret key rate is derived to investigate the security of LOCM DPM-CVQKD. Simulation results demonstrate that the composable secret key rate and transmission distance are closely related to the tuning gain and the transmittance of LOCM. Once these two parameters are set to appropriate values, LOCM can improve the secret key rate and transmission distance of DPM-CVQKD, as well as its resistance to excess noise. Meanwhile, taking finite-size effect into consideration, the LOCM can also effectively reduce the requirement for the block size of the exchanged signals, which is beneficial to the feasibility and practicability of CVQKD. Owing to the fact that the performance of LOCM DPM-CVQKD is largely reliant on the calibration selection of relevant parameters, further research may concentrate on the optimization of LOCM in experimental implementations, where machine learning related methods may be utilized.
      Corresponding author: Wang Tian-Yi, tywang@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62361009) and the Science and Technology Projects of Guizhou Province, China (Grant No. ZK[2021]304).
    [1]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [3]

    Zhang C X, Wu D, Cui P W, Ma J C, Wang Y, An J M 2023 Chin. Phys. B 32 124207Google Scholar

    [4]

    Zapatero V, Navarrete A, Curty M 2024 Adv. Quantum Technol. 202300380

    [5]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [6]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hubel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [7]

    Guo H, Li Z, Yu S, Zhang Y C 2021 Fundam. Res. 1 96Google Scholar

    [8]

    Zhang Y C, Bian Y M, Li Z Y, Yu S 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [9]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [10]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [11]

    Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C; Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. Technol. 4 035006Google Scholar

    [12]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [13]

    Jain N, Chin H M, Mani H, Lupo C, Nikolic D S, Kordts A, Pirandola S, Pedersen T B, Kolb M, Omer B, Pacher C, Gehring T, Andersen U L 2022 Nat. Commun. 13 4740Google Scholar

    [14]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [15]

    Wang T, Huang P, Li L, Zhou Y M, Zeng G H 2024 New J. Phys. 26 023002Google Scholar

    [16]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [17]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [18]

    Zheng Y, Wang Y L, Fang C L, Shi H B, Pan W 2024 Phys. Rev. A 109 022424Google Scholar

    [19]

    张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元 2024 物理学报 73 060301Google Scholar

    Zhang G W, Bai J D, Jie Q, Jin J J, Zhang Y M, Liu W Y 2024 Acta Phys. Sin. 73 060301Google Scholar

    [20]

    Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012 Phys. Rev. A 86 032309Google Scholar

    [21]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304.Google Scholar

    Wu X D, Huang D, Huang P, Guo Y, 2022 Acta Phys. Sin. 71 240304Google Scholar

    [22]

    张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民 2024 物理学报 73 060302Google Scholar

    Zhang Y J, Wang X Y, Zhang Y, Wang N, Jia Y X, Shi Y Q, Lu Z G, Zou J, Li Y M 2024 Acta Phys. Sin. 73 060302Google Scholar

    [23]

    Lupo C 2020 Phys. Rev. A 102 022623Google Scholar

    [24]

    Wang T Y, Li M, Wang X 2022 Opt. Express 30 36122Google Scholar

    [25]

    Wang T Y, Li M, Wang X, Hou L 2023 Opt. Express 31 21014Google Scholar

    [26]

    Guo Y, Lv G, Zeng G H 2015 Quantum Inf. Process. 14 4323Google Scholar

    [27]

    Wu X D, Liao Q, Huang D, Wu X H, Guo Y 2017 Chin. Phys. B 26 110304Google Scholar

    [28]

    Zhang H, Mao Y, Huang D, Guo Y, Wu X D, Zhang L 2018 Chin. Phys. B 27 090307Google Scholar

    [29]

    Yang F L, Qiu D W 2020 Quantum Inf. Process. 19 99Google Scholar

    [30]

    He Y, Wang T Y 2024 Quantum Inf Process. 23 135Google Scholar

    [31]

    Mao Y Y, Wang Y J, Guo Y, Mao Y H, Huang W T 2021 Acta Phys. Sin. 70 110302 [毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体 2021 物理学报 70 110302]Google Scholar

    Mao Y Y, Wang Y J, Guo Y, Mao Y H, Huang W T 2021 Acta Phys. Sin. 70 110302Google Scholar

    [32]

    吴晓东, 黄端 2023 物理学报 72 050303Google Scholar

    Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303Google Scholar

    [33]

    Stefano P 2021 Phys. Rev. Res. 3 013279Google Scholar

    [34]

    Pirandola S 2021 Phys. Rev. Res. 3 043014Google Scholar

    [35]

    Mountogiannakis A G, Papanastasiou P, Pirandola S 2022 Phys. Rev. A 106 042606Google Scholar

    [36]

    Liu J Y, Ding H J, Zhang C M, Xie S P, Wang Q 2019 Phys. Rev. Appl. 12 014059Google Scholar

    [37]

    Liu J Y, Jiang Q Q, Ding H J, Ma X, Sun M S, Xu J X, Zhang C H, Xie S P, Li J, Zeng G H, Zhou X Y, Wang Q 2023 Sci. China Inf. Sci. 66 189402Google Scholar

    [38]

    Zhang Z K, Liu W Q, Qi J, He C, Huang P 2023 Phys. Rev. A 107 062614Google Scholar

    [39]

    Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021 npj Quantum Inf. 7 20Google Scholar

    [40]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501Google Scholar

  • 图 1  LOCM DPM-CVQKD的制备测量方案

    Figure 1.  The PM scheme of LOCM DPM-CVQKD protocol.

    图 2  LOCM DPM-CVQKD的纠缠等价方案

    Figure 2.  The EB scheme of LOCM DPM-CVQKD protocol.

    图 3  LOCM对DPM-CVQKD可组合安全密钥率的改进

    Figure 3.  Enhancement of LOCM on the composable secret key rate of DPM-CVQKD.

    图 4  LOCM对DPM-CVQKD可容忍过量噪声的改进

    Figure 4.  Enhancement of LOCM on the tolerable excess noise of DPM-CVQKD.

    图 5  调制方差对最大传输距离的影响, 幅值分辨率和相位分辨率分别设置为${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$

    Figure 5.  The effect of modulation variance on maximum transmission distance, the amplitude resolution and phase resolution are ${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$, respectively.

    图 6  LOCM参数对可组合安全密钥率的影响, 幅值分辨率和相位分辨率分别设置为${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$

    Figure 6.  Effect of LOCM-related parameters on the composable secret key rate, the amplitude resolution and phase resolution are ${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$, respectively.

    图 7  LOCM参数对最大传输距离的影响, 幅值分辨率和相位分辨率分别设置为${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$ (a)调谐增益$\lambda $与传输损耗的关系; (b)等效透射率$\tau $与传输损耗的关系

    Figure 7.  Effect of LOCM parameters on maximum transmission distance, the amplitude resolution and phase resolution are set to ${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$, respectively: (a) The tuning gain $\lambda $ versus losses; (b) the equivalent transmittance $\tau $ versus losses.

    图 8  不同传输距离下码长对可组合安全密钥率的影响, 幅值分辨率和相位分辨率分别设置为${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$

    Figure 8.  Effect of block length on the composable secret key rate under different transmission distances, the amplitude resolution and phase resolution are set to ${\delta _{\text{a}}} = 0.25$, ${\delta _{\text{p}}} = 0.02$, respectively.

  • [1]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [3]

    Zhang C X, Wu D, Cui P W, Ma J C, Wang Y, An J M 2023 Chin. Phys. B 32 124207Google Scholar

    [4]

    Zapatero V, Navarrete A, Curty M 2024 Adv. Quantum Technol. 202300380

    [5]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [6]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hubel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [7]

    Guo H, Li Z, Yu S, Zhang Y C 2021 Fundam. Res. 1 96Google Scholar

    [8]

    Zhang Y C, Bian Y M, Li Z Y, Yu S 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [9]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [10]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [11]

    Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C; Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. Technol. 4 035006Google Scholar

    [12]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [13]

    Jain N, Chin H M, Mani H, Lupo C, Nikolic D S, Kordts A, Pirandola S, Pedersen T B, Kolb M, Omer B, Pacher C, Gehring T, Andersen U L 2022 Nat. Commun. 13 4740Google Scholar

    [14]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [15]

    Wang T, Huang P, Li L, Zhou Y M, Zeng G H 2024 New J. Phys. 26 023002Google Scholar

    [16]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [17]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [18]

    Zheng Y, Wang Y L, Fang C L, Shi H B, Pan W 2024 Phys. Rev. A 109 022424Google Scholar

    [19]

    张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元 2024 物理学报 73 060301Google Scholar

    Zhang G W, Bai J D, Jie Q, Jin J J, Zhang Y M, Liu W Y 2024 Acta Phys. Sin. 73 060301Google Scholar

    [20]

    Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012 Phys. Rev. A 86 032309Google Scholar

    [21]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304.Google Scholar

    Wu X D, Huang D, Huang P, Guo Y, 2022 Acta Phys. Sin. 71 240304Google Scholar

    [22]

    张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民 2024 物理学报 73 060302Google Scholar

    Zhang Y J, Wang X Y, Zhang Y, Wang N, Jia Y X, Shi Y Q, Lu Z G, Zou J, Li Y M 2024 Acta Phys. Sin. 73 060302Google Scholar

    [23]

    Lupo C 2020 Phys. Rev. A 102 022623Google Scholar

    [24]

    Wang T Y, Li M, Wang X 2022 Opt. Express 30 36122Google Scholar

    [25]

    Wang T Y, Li M, Wang X, Hou L 2023 Opt. Express 31 21014Google Scholar

    [26]

    Guo Y, Lv G, Zeng G H 2015 Quantum Inf. Process. 14 4323Google Scholar

    [27]

    Wu X D, Liao Q, Huang D, Wu X H, Guo Y 2017 Chin. Phys. B 26 110304Google Scholar

    [28]

    Zhang H, Mao Y, Huang D, Guo Y, Wu X D, Zhang L 2018 Chin. Phys. B 27 090307Google Scholar

    [29]

    Yang F L, Qiu D W 2020 Quantum Inf. Process. 19 99Google Scholar

    [30]

    He Y, Wang T Y 2024 Quantum Inf Process. 23 135Google Scholar

    [31]

    Mao Y Y, Wang Y J, Guo Y, Mao Y H, Huang W T 2021 Acta Phys. Sin. 70 110302 [毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体 2021 物理学报 70 110302]Google Scholar

    Mao Y Y, Wang Y J, Guo Y, Mao Y H, Huang W T 2021 Acta Phys. Sin. 70 110302Google Scholar

    [32]

    吴晓东, 黄端 2023 物理学报 72 050303Google Scholar

    Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303Google Scholar

    [33]

    Stefano P 2021 Phys. Rev. Res. 3 013279Google Scholar

    [34]

    Pirandola S 2021 Phys. Rev. Res. 3 043014Google Scholar

    [35]

    Mountogiannakis A G, Papanastasiou P, Pirandola S 2022 Phys. Rev. A 106 042606Google Scholar

    [36]

    Liu J Y, Ding H J, Zhang C M, Xie S P, Wang Q 2019 Phys. Rev. Appl. 12 014059Google Scholar

    [37]

    Liu J Y, Jiang Q Q, Ding H J, Ma X, Sun M S, Xu J X, Zhang C H, Xie S P, Li J, Zeng G H, Zhou X Y, Wang Q 2023 Sci. China Inf. Sci. 66 189402Google Scholar

    [38]

    Zhang Z K, Liu W Q, Qi J, He C, Huang P 2023 Phys. Rev. A 107 062614Google Scholar

    [39]

    Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021 npj Quantum Inf. 7 20Google Scholar

    [40]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501Google Scholar

  • [1] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [3] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [4] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [5] Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying. Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation. Acta Physica Sinica, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [6] Zhong Hai, Ye Wei, Wu Xiao-Dong, Guo Ying. Optical preamplifier based simultaneous quantum key distribution and classical communication scheme. Acta Physica Sinica, 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [7] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [8] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [9] Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li. Continuous variable polarization entanglement in microwave domain. Acta Physica Sinica, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [10] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [11] Yan Zhi-Hui, Jia Xiao-Jun, Xie Chang-De, Peng Kun-Chi. Continuous-variable three-color tripartite entangled state generated by a non-degenerate optical parameter oscillator. Acta Physica Sinica, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [12] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [13] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [14] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [15] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [16] He Guang-Qiang, Guo Hong-Bin, Li Yu-Dan, Zhu Si-Wei, Zeng Gui-Hua. Quantum key distribution using binary-modulated coherent states. Acta Physica Sinica, 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [17] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [18] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [20] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
Metrics
  • Abstract views:  1187
  • PDF Downloads:  31
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2024
  • Accepted Date:  28 October 2024
  • Available Online:  16 November 2024
  • Published Online:  05 December 2024

/

返回文章
返回