-
Continuous-variable quantum key distribution (CVQKD) is an important application of quantum technology, which enables long-distance communicating parties to establish a string of unconditionally secure keys in an insecure environment. However, in a practical CVQKD system, the finite sampling bandwidth of the analog-to-digital converter (ADC) at the receiver may create inaccurate sampling results, leading to errors in parameter estimation process and leaving a security loophole for eavesdroppers. In order to eliminate the finite sampling bandwidth effect, we propose a peak-compensation-based CVQKD scheme, which estimates the discrepancy between the maximum sampling value and the peak value of each pulse based on the characteristics of Gaussian pulse. The maximum sampling values are compensated by the estimated discrepancy, so that the legitimate parties can obtain correct sampling results. We analyze the influence of the finite sampling bandwidth on the security of the system, expounding the specific steps of peak-compensation, comparing the estimated excess noise before and after peak-compensation, and discussing the security of the system under Gaussian collective attacks. Simulation results show that this scheme can greatly improve the accuracy of pulse peak sampling and remove the finite sampling bandwidth effect. Moreover, the channel parameters estimated by the communicating parties are also corrected by using the compensated values. Compared with the scheme without peak-compensation, this scheme eliminates the limitation of the system repetition to the secret key bit rate, and has longer secure transmission distance and higher secret key bit rate. In addition, compared with other methods of solving the finite sampling bandwidth effect, the proposed scheme can be directly implemented in data processing stage after sampling without any additional devices, and thus increasing no complexity of the system.
[1] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar
[2] Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar
[3] Wang B X, Mao Y Q, Shen L, Zhang L, Lan X B, Ge D W, Gao Y Y, Li J H, Tang Y L, Tang S B, Zhang J, Chen T Y, Pan J W 2020 Opt. Express 28 12558Google Scholar
[4] Zhang Y, Li Z, Chen Z, Weedbrook C, Zhao Y, Wang X, Huang Y, Xu C, Zhang X, Wang Z, Li M, Zhang X, Zheng Z, Chu B, Gao X, Meng N, Cai W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. and Technol. 4 035006Google Scholar
[5] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[6] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar
[7] Laudenbach F, Pacher C, Fung C-H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar
[8] Ralph T C 1999 Phys. Rev. A 61 010303Google Scholar
[9] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar
[10] Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R, Grangier P 2003 Quantum Inf. Comput. 3 535
[11] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504Google Scholar
[12] Pirandola S, Mancini S, Lloyd S, Braunstein S L 2008 Nat. Phys. 4 726Google Scholar
[13] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar
[14] Weedbrook C, Pirandola S, Ralph T C 2012 Phys. Rev. A 86 022318Google Scholar
[15] Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar
[16] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905Google Scholar
[17] Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar
[18] García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar
[19] Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar
[20] Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar
[21] Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar
[22] Jain N, Anisimova E, Khan I, Makarov V, Marquardt C, Leuchs G 2014 New J. Phys. 16 123030Google Scholar
[23] Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar
[24] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar
[25] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C, Han Z F 2013 Phys. Rev. A 87 062329Google Scholar
[26] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar
[27] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar
[28] Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar
[29] Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar
[30] Zheng Y, Huang P, Huang A, Peng J, Zeng G 2019 Opt. Express 27 27369Google Scholar
[31] Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96
[32] Wang C, Huang P, Huang D, Lin D, Zeng G 2016 Phys. Rev. A 93 022315Google Scholar
[33] Li H, Wang C, Huang P, Huang D, Wang T, Zeng G 2016 Opt. Express 24 20481Google Scholar
[34] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar
[35] Wang C, Huang D, Huang P, Lin D, Peng J, Zeng G 2015 Sci. Rep. 5 14607Google Scholar
[36] Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323Google Scholar
[37] Huang P, Huang J, Wang T, Li H, Huang D, Zeng G 2017 Phys. Rev. A 95 052302Google Scholar
-
图 2 零差探测器输出脉冲的时域波形, 箭头表示采样位置.
${t_{\rm{s}}}$ 为采样间隔,${U_{\rm{p}}}$ 为脉冲的峰值,${U_{\rm{m}}}$ 为最大测量值,${T_0}$ 为脉冲持续时间Figure 2. Time-domain shape of an output pulse from the balanced homodyne detector.
${t_{\rm{s}}}$ , sampling interval;${U_{\rm{p}}}$ , peak value of the pulse;${U_{\rm{m}}}$ , maximal measurement value;${T_0}$ , duration of each pulse.图 3 (a)有限采样带宽影响下的高斯脉冲时域采样情况; (b)峰值补偿后的采样值. 其中蓝色线表示脉冲时域波形, 红色圆点代表采样值
Figure 3. (a) Sampling positions of Gaussian pulses effected by finite-sampling bandwidth; (b) sampling values after peak compensation. The blue line represents the time-domain shape of the pulses, and the red dots represent the sampled values.
-
[1] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar
[2] Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar
[3] Wang B X, Mao Y Q, Shen L, Zhang L, Lan X B, Ge D W, Gao Y Y, Li J H, Tang Y L, Tang S B, Zhang J, Chen T Y, Pan J W 2020 Opt. Express 28 12558Google Scholar
[4] Zhang Y, Li Z, Chen Z, Weedbrook C, Zhao Y, Wang X, Huang Y, Xu C, Zhang X, Wang Z, Li M, Zhang X, Zheng Z, Chu B, Gao X, Meng N, Cai W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. and Technol. 4 035006Google Scholar
[5] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[6] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar
[7] Laudenbach F, Pacher C, Fung C-H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar
[8] Ralph T C 1999 Phys. Rev. A 61 010303Google Scholar
[9] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar
[10] Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R, Grangier P 2003 Quantum Inf. Comput. 3 535
[11] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504Google Scholar
[12] Pirandola S, Mancini S, Lloyd S, Braunstein S L 2008 Nat. Phys. 4 726Google Scholar
[13] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar
[14] Weedbrook C, Pirandola S, Ralph T C 2012 Phys. Rev. A 86 022318Google Scholar
[15] Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar
[16] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905Google Scholar
[17] Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar
[18] García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar
[19] Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar
[20] Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar
[21] Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar
[22] Jain N, Anisimova E, Khan I, Makarov V, Marquardt C, Leuchs G 2014 New J. Phys. 16 123030Google Scholar
[23] Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar
[24] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar
[25] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C, Han Z F 2013 Phys. Rev. A 87 062329Google Scholar
[26] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar
[27] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar
[28] Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar
[29] Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar
[30] Zheng Y, Huang P, Huang A, Peng J, Zeng G 2019 Opt. Express 27 27369Google Scholar
[31] Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96
[32] Wang C, Huang P, Huang D, Lin D, Zeng G 2016 Phys. Rev. A 93 022315Google Scholar
[33] Li H, Wang C, Huang P, Huang D, Wang T, Zeng G 2016 Opt. Express 24 20481Google Scholar
[34] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar
[35] Wang C, Huang D, Huang P, Lin D, Peng J, Zeng G 2015 Sci. Rep. 5 14607Google Scholar
[36] Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323Google Scholar
[37] Huang P, Huang J, Wang T, Li H, Huang D, Zeng G 2017 Phys. Rev. A 95 052302Google Scholar
Catalog
Metrics
- Abstract views: 4731
- PDF Downloads: 64
- Cited By: 0