-
Discrete modulation continuous variable measurement device independent quantum key distribution scheme has good compatibility with efficient error correction codes, which leads to high reconciliation efficiency even at low signal-to-noise ratio. Besides, the implementation of this protocol is simpler than that of Gaussian modulation scheme. However, the quantum efficiency of homodyne detector commonly used in the experiment is only 0.6, which will seriously affect the practical application performance of discrete modulation continuous variable measurement device independent quantum key distribution scheme. To solve this problem, we propose a discrete modulation continuous variable measurement device independent quantum key distribution scheme based on realistic detector compensation. In our scheme, for the outputs of two quantum channels, each adopts a phase sensitive amplifier to compensate for the corresponding realistic homodyne detector. The simulation results show that the phase sensitive amplifier can well compensate for the quantum efficiency of the realistic detector and effectively improve the performance of the discrete modulation continuous variable measurement device independent quantum key distribution scheme with realistic detector in terms of secret key rate and secure transmission distance. The proposed protocol provides an effective method for promoting the practical development of the discrete modulation continuous variable measurement device independent quantum key distribution scheme.
-
Keywords:
- discrete modulation /
- continuous variable /
- measurement device independent quantum key distribution /
- realistic detector compensation
[1] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar
[2] Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar
[3] Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar
[4] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar
[5] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar
[6] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar
[7] Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar
[8] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar
[9] Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar
[10] 钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar
Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin 70 020301Google Scholar
[11] Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar
[12] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar
[13] Wang T, Zuo Z, Li L, Huang P, Guo Y, Zeng G 2022 Phys. Rev. Appl. 18 014064Google Scholar
[14] Liu C, Zhu C, Nie M, Yang H, Pei C 2022 Opt. Express 30 14798Google Scholar
[15] Jing F, Liu X, Wang X, Lu Y, Wu T, Li K, Dong C 2022 Opt. Express 30 8075Google Scholar
[16] Sarmiento S, Etcheverry S, Aldama J, López I H, Vidarte L T, Xavier G B, Nolan D A, Stone J S, Li M J, Loeber D, Pruneri V 2022 New J. Phys. 24 063011Google Scholar
[17] García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar
[18] Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar
[19] Pirandola S, Braunstein S L, Lloyd S 2008 Phys. Rev. Lett. 101 200504Google Scholar
[20] Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar
[21] Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar
[22] Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar
[23] Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar
[24] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[25] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar
[26] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar
[27] Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar
[28] Filip R 2008 Phys. Rev. A 77 022310Google Scholar
[29] Yuan Z L, Dynes J F, Shields A J 2010 Nat. Photonics 4 800Google Scholar
[30] Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar
[31] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar
[32] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar
[33] Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar
[34] Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar
[35] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar
[36] Wang X B 2013 Phys. Rev. A 87 012320Google Scholar
[37] Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar
[38] Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar
[39] Lupo C, Ottaviani C, Papanastasiou P, Pirandola S 2018 Phys. Rev. Lett. 120 220505Google Scholar
[40] Ferreira da S T, Vitoreti D, Xavier G B, do Amaral G C, Temporao G P, von derWeid J P 2013 Phys. Rev. A 88 052303Google Scholar
[41] Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Abulizi M, Li C L, Zhang W, Sun Q C, Liu W Y, Jiang X, Liao S K, Ren J G, Li H, You L, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar
[42] Xu F, Qi B, Liao Z, Lo H K 2013 Appl. Phys. Lett. 103 061101Google Scholar
[43] Li Z, Zhang Y C, Xu F, Peng X, Guo H 2014 Phys. Rev. A 89 052301Google Scholar
[44] Ma X C, Sun S H, Jiang M S, Gui M, Liang L M 2014 Phys. Rev. A 89 042335Google Scholar
[45] Zhang Y C, Li Z, Yu S, Gu W, Peng X, Guo H 2014 Phys. Rev. A 90 052325Google Scholar
[46] Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar
[47] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 397Google Scholar
[48] Richardson T J, Shokrollahi M A, Urbanke R 2001 IEEE Trans. Inf. Theory 47 619Google Scholar
[49] Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325Google Scholar
[50] Jouguet P, Kunz-Jacques S, Leverrier A 2011 Phys. Rev. A 84 062317Google Scholar
[51] Milicevic M, Chen F, Zhang L M, Gulak P. G 2018 npj Quantum Inf. 4 21Google Scholar
[52] Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar
[53] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar
[54] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar
[55] Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095Google Scholar
[56] Pirandola S 2013 New J. Phys. 15 113046Google Scholar
[57] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B 42 114014Google Scholar
[58] Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar
-
-
[1] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar
[2] Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar
[3] Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar
[4] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar
[5] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar
[6] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar
[7] Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar
[8] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar
[9] Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar
[10] 钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar
Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin 70 020301Google Scholar
[11] Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar
[12] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar
[13] Wang T, Zuo Z, Li L, Huang P, Guo Y, Zeng G 2022 Phys. Rev. Appl. 18 014064Google Scholar
[14] Liu C, Zhu C, Nie M, Yang H, Pei C 2022 Opt. Express 30 14798Google Scholar
[15] Jing F, Liu X, Wang X, Lu Y, Wu T, Li K, Dong C 2022 Opt. Express 30 8075Google Scholar
[16] Sarmiento S, Etcheverry S, Aldama J, López I H, Vidarte L T, Xavier G B, Nolan D A, Stone J S, Li M J, Loeber D, Pruneri V 2022 New J. Phys. 24 063011Google Scholar
[17] García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar
[18] Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar
[19] Pirandola S, Braunstein S L, Lloyd S 2008 Phys. Rev. Lett. 101 200504Google Scholar
[20] Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar
[21] Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar
[22] Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar
[23] Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar
[24] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[25] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar
[26] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar
[27] Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar
[28] Filip R 2008 Phys. Rev. A 77 022310Google Scholar
[29] Yuan Z L, Dynes J F, Shields A J 2010 Nat. Photonics 4 800Google Scholar
[30] Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar
[31] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar
[32] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar
[33] Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar
[34] Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar
[35] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar
[36] Wang X B 2013 Phys. Rev. A 87 012320Google Scholar
[37] Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar
[38] Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar
[39] Lupo C, Ottaviani C, Papanastasiou P, Pirandola S 2018 Phys. Rev. Lett. 120 220505Google Scholar
[40] Ferreira da S T, Vitoreti D, Xavier G B, do Amaral G C, Temporao G P, von derWeid J P 2013 Phys. Rev. A 88 052303Google Scholar
[41] Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Abulizi M, Li C L, Zhang W, Sun Q C, Liu W Y, Jiang X, Liao S K, Ren J G, Li H, You L, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar
[42] Xu F, Qi B, Liao Z, Lo H K 2013 Appl. Phys. Lett. 103 061101Google Scholar
[43] Li Z, Zhang Y C, Xu F, Peng X, Guo H 2014 Phys. Rev. A 89 052301Google Scholar
[44] Ma X C, Sun S H, Jiang M S, Gui M, Liang L M 2014 Phys. Rev. A 89 042335Google Scholar
[45] Zhang Y C, Li Z, Yu S, Gu W, Peng X, Guo H 2014 Phys. Rev. A 90 052325Google Scholar
[46] Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar
[47] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 397Google Scholar
[48] Richardson T J, Shokrollahi M A, Urbanke R 2001 IEEE Trans. Inf. Theory 47 619Google Scholar
[49] Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325Google Scholar
[50] Jouguet P, Kunz-Jacques S, Leverrier A 2011 Phys. Rev. A 84 062317Google Scholar
[51] Milicevic M, Chen F, Zhang L M, Gulak P. G 2018 npj Quantum Inf. 4 21Google Scholar
[52] Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar
[53] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar
[54] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar
[55] Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095Google Scholar
[56] Pirandola S 2013 New J. Phys. 15 113046Google Scholar
[57] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B 42 114014Google Scholar
[58] Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar
Catalog
Metrics
- Abstract views: 3739
- PDF Downloads: 92
- Cited By: 0