-
Quantum communication can realize secure information transmission based on the fundamental principles of quantum mechanics. Photon is a crucial information carrier in quantum communication. The photonic quantum communication protocols require the transmission of photons or photonic entanglement between communicating parties. However, during this process, photon transmission loss inevitably occurs due to environmental noise. Photon transmission loss significantly reduces the efficiency of quantum communication and even threatens its security, so that it becomes a major obstacle for practical long-distance quantum communication. Quantum noiseless linear amplification (NLA) is a promising method for mitigating photon transmission loss. Through local operations and post-selection, NLA can effectively increase the fidelity of the target state or the average photon number in the output state while perfectly preserve the encoded information of the target state. As a result, employing NLA technology can effectively overcome photon transmission loss and extend the secure communication distance.
In this paper, we categorize existing NLA protocols into two classes: the NLA protocols in DV quantum systems and CV quantum systems. In DV quantum systems, we provide a detailed introduction of the quantum scissor (QS)-based NLA protocols for single photons, single-photon polarization qubits, and single-photon spatial entanglement. The QS-based NLA can effectively increase the fidelity of the target states while perfectly preserve its encodings. In recent years, researchers have researched on various improvement on QS-based NLA protocols. In CV quantum systems, researchers adopted parallel multiple QSs structure, generalized QS to increase the average photon number of the Fock state, coherent states and two-mode squeezed vacuum state. Beyond theoretical progress, experimental implementations of NLA have also made significant progresses. We summarize representative experimental demonstrations of QS-based NLA protocols.
In the concluding section, we provide perspectives on future development directions for NLA to facilitate its practical applications. This review can provide theoretical support for the practical development of NLA in the future.-
Keywords:
- Quantum communication /
- Quantum noise-free linear amplification /
- Continuous variables /
- Discrete variables
-
[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[3] Duan L M, Lukin M, Cirac I, Zoller P 2001 Nature 414 413
[4] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502
[5] Briegel H J, Browne D E, Dür W, Raussendorf R, Nest M V den 2009 Nat. Phys. 5 19
[6] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787
[7] Goswami S, Dhara S 2023 Phys. Rev. Appl. 20 024048
[8] Ralph T C, Lund A P 2009 AIP Conference Proceedings 1110 155
[9] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N, Thew R T 2012 Phys. Rev. A 86 023815
[10] Xiang G Y, Ralph T C, Lund A P, Walk N, Pryde G J 2010 Nat. Photon. 4 316
[11] Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501
[12] Curty M, Moroder T 2011 Phys. Rev. A 84 010304
[13] Pitkanen D, Ma X, Wickert R, Van Loock P, Lütkenhaus N 2011 Phys. Rev. A 84 022325
[14] Zhang S, Yang S, Zou X, Shi B, Guo G 2012 Phys. Rev. A 86 034302
[15] Monteiro F, Verbanis E, Vivoli V C, Martin A, Gisin N, Zbinden H, Thew R T 2017 Quantum Sci. Technol. 2 024008
[16] Meyer-Scott E, Bula M, Bartkiewicz K, Černoch A, Soubusta J, Jennewein T, Lemr K 2013 Phys. Rev. A 88 012327
[17] Yang S, Zhang S, Zou X, Bi S, Lin X 2013 Phys. Rev. A 87 024302
[18] Kocsis S, Xiang G Y, Ralph T C, Pryde G J 2013 Nat. Phys. 9 23
[19] Zhou L, Sheng Y B 2013 J. Opt. Soc. Am. B 30 2737
[20] Zhou L, Sheng Y B 2015 Laser Phys. Lett. 12 045203
[21] Ou-Yang Y, Feng Z F, Zhou L, Sheng Y B 2015 Laser Phys. 26 015204
[22] Zhou L, Chen L Q, Zhong W, Sheng Y B 2018 Laser Phys. Lett. 15 015201
[23] Wang D D, Jin Y Y, Qin S X, Zu H, Zhou L, Zhong W, Sheng Y B 2018 Quantum Inf. Process. 17 56
[24] Yang G, Zhang Y S, Yang Z R, Zhou L, Sheng Y B 2019 Quantum Inf. Process. 18 317
[25] Li Y P, Zhang J, Xu B W, Zhou L, Zhong W, Sheng Y B 2020 Quantum Inf. Process. 19 261
[26] Xu B W, Zhang J, Zhou L, Zhong W, Sheng Y B 2021 Quantum Inf. Process. 20 163
[27] Feng Y P, Gu J Q, Zhou L, Zhong W, Du M M, Li X Y, Sheng Y B 2024 Quantum Inf. Process. 23 201
[28] Seshadreesan K P, Krovi H, Guha S 2019 Phys. Rev. A 100 022315
[29] Winnel M S, Hosseinidehaj N, Ralph T C 2020 Phys. Rev. A 102 063715
[30] He M, Malaney R, Burnett B A 2021 Phys. Rev. A 103 012414
[31] Zhong W, Li Y P, Sheng Y B, Zhou L 2022 EPL 140 18003
[32] Guanzon J J, Winnel M S, Lund A P, Ralph T C 2022 Phys. Rev. Lett. 128 160501
[33] Zhu Y, Zhu W, Zhong W, Du M, Sheng Y, Zhou L 2023 Chin. Sci. Bull. 68 2411
[34] Zavatta A, Fiurášek J, Bellini M 2010 Nat. Photon. 5 52
[35] Chrzanowski H M, Walk N, Assad S M, Janousek J, Hosseini S, Ralph T C, Symul T, Lam P K 2014 Nat. Photon. 8 333
[36] Ulanov A E, Fedorov I A, Pushkina A A, Kurochkin Y V, Ralph T C, Lvovsky A I 2015 Nat. Photon. 9 764
[37] Fiurášek J 2024 Opt. Express 32 2527
[38] Xin J 2024 Opt. Express 32 48541
[39] Notarnicola M N, Olivares S 2023 Phys. Rev. A 108 022404
[40] Acín A, Gisin N, Masanes L 2006 Phys. Rev. Lett. 97 120405
[41] Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501
[42] Pironio S, Acin A, Brunner N, Gisin N, Massar S, Scarani V 2009 New J. Phys. 11 045021
[43] Lee H W, Kim J 2000 Phys. Rev. A 63 012305
[44] Hessmo B, Usachev P, Heydari H, Björk G 2004 Phys. Rev. Lett. 92 180401
[45] Halenková E, Černoch A, Lemr K, Soubusta J, Drusová S 2012 Appl. Opt., AO 51 474
[46] Ferreyrol F, Barbieri M, Blandino R, Fossier S, Tualle-Brouri R, Grangier P 2010 Phys. Rev. Lett. 104 123603
[47] Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556
[48] Fiurášek J 2022 Phys. Rev. A 105 062425
Metrics
- Abstract views: 193
- PDF Downloads: 2
- Cited By: 0