Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fragile-to-strong transition of FeZrB-based metallic glass and its influence on glass-forming ability

WANG Jianfeng SHI Luxin FEI Ting BAI Yanwen HU Lina

Citation:

Fragile-to-strong transition of FeZrB-based metallic glass and its influence on glass-forming ability

WANG Jianfeng, SHI Luxin, FEI Ting, BAI Yanwen, HU Lina
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Glass-forming liquids exhibit unique dynamic transition behavior during temperature changes. The system undergoes a transition from the fragile liquid to the strong liquid, which is known as the fragile-to-strong transition as the temperature decreases. In order to address the issue of poor glass-forming ability (GFA) in Fe-based alloys, through studying the kinetic behavior of the Fe-Zr-B-M (M = Nb, Ti, Al) alloy system, the mechanism of ductile-brittle transition is revealed and the relationship between the degree of ductile-brittle transition and the GFA is established. In this study, through viscosity measurements, a pronounced fragile-to-strong transition behavior in this system is revealed. By using crystallization activation energy as an evaluation criterion, a negative correlation between the degree of the fragile-to-strong transition and the GFA in the Fe-Zr-B-M system is established. The results indicate that the crystal-like clusters play a critical role in the solidification process of the Fe-Zr-B-M metallic glasses. Based on this, a fragile-to-strong transition mechanism involving the structural transformation from the icosahedral clusters to the crystal-like clusters is proposed. Through theoretical calculations of mixing enthalpy and mismatch entropy and by combining microstructural characterization, it is found that alloy compositions with more negative mixing enthalpy and higher mismatch entropy can effectively suppress the tendency of icosahedral structures to transform into crystal-like structures, thereby hindering crystallization and promoting the formation of a more disordered amorphous structure. This structural feature not only corresponds to superior glass-forming ability but also exhibits a weak fragile-to-strong transition phenomenon. In this work, the intrinsic correlation between viscosity characteristics and the GFA is revealed, providing a theoretical basis for developing Fe-based metallic glasses with high GFA.
  • 图 1  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃条带的(a) XRD曲线和(b) HRTEM图像, 插图为相应的选区电子衍射图像

    Figure 1.  (a) X-ray diffraction patterns and (b) HRTEM images of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) metallic glass ribbons, the inset of panel (b) is the corresponding selected area electron diffraction images.

    图 2  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃条带的DSC曲线, 升温速率为20 K/min

    Figure 2.  DSC curves of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) metallic glass ribbons with heating rate is 20 K/min.

    图 3  降温过程中黏度变化 (a) Fe84Zr9B7; (b) (Fe0.84Zr0.09B0.07)97Nb3; (c) (Fe0.84Zr0.09B0.07)97Al3

    Figure 3.  Temperature dependence of the viscosity values (η) during cooling: (a) Fe84Zr9B7; (b) (Fe0.84Zr0.09B0.07)97Nb3; (c) (Fe0.84Zr0.09B0.07)97Al3.

    图 4  (a) Fe84Zr9B7金属玻璃条带不同热扫描速率下的DSC曲线; (b) FeZrB, Nb3, Ti3和Al3的Kissinger公式拟合曲线

    Figure 4.  DSC curves of Fe84Zr9B7 metallic glass ribbons with different heating rates; (b) the fitting curses of Kissinger’s formula for FeZrB, Nb3, Ti3 and Al3.

    图 5  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃液体黏度对数随温度的变化趋势

    Figure 5.  Vscosities of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) as functions of temperature.

    图 6  (a) Fe-Zr-B-M强脆转变系数f与晶化激活能E的关系; (b) CuZr合金玻璃形成的临界厚度Dmax、强脆转变系数f随Cu含量的变化[19]

    Figure 6.  (a) Correlation between the activation energy of crystallization (E) and the fragile-to-strong trasition parameter (f) of Fe-Zr-B-M; (b) the critical sample thickness (Dmax) for glass formation, the fragile-to-strong trasition parameter (f) versus the fraction of Cu in CuZr alloy series.

    图 7  Fe-Zr-B-M体系的(a)强脆转变系数f; (b)晶化激活能E及(c)混合焓和错配熵乘积的绝对值${|\Delta }{{H}}^{\text{chem}}\times $ $ {{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $

    Figure 7.  (a) The fragile-to-strong trasition parameter (f); (b) the activation energy of crystallization (E); (c) $ {|\Delta }{{H}}^{\text{chem}}\times{{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $ of Fe-Zr-B-M system.

    图 8  (a) 正方形的划分方法; (b)—(e) Fe84Zr9B7, (Fe0.84Zr0.09B0.07)97Nb3, (Fe0.84Zr0.09B0.07)97Ti3及(Fe0.84Zr0.09B0.07)97Al3自相关分析图像

    Figure 8.  (a) Method of dividing the HRTEM images into cells; (b)–(e) autocorrelation images of Fe84Zr9B7, (Fe0.84Zr0.09B0.07)97Nb3, (Fe0.84Zr0.09B0.07)97Ti3 and (Fe0.84Zr0.09B0.07)97Al3.

    图 9  Fe-Zr-B-M体系在冷却过程中的团簇演变示意图, 蓝色圆点和红色圆点分别代表类晶团簇和二十面体团簇, 灰色圆点代表自由原子或者其他局域结构

    Figure 9.  Schematic diagram of clusters evolution of Fe-Zr-B-M during the cooling process, the blue and red dots represent the crystal-like and the icosahedra clusters in the liquid, respectively, while the gray dots represent the free atoms or other local structural configurations.

    表 1  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)合金的高温脆性系数m′和过冷液体脆性系数m

    Table 1.  Fragility index for high temperature (m′) liquid and supercooled liquid (m) of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al).

    成分 高温脆性m E/(kJ·mol–1) R2 过冷液体脆性系数m
    Fe84Zr9B7 129.3 413.8 0.976 25.2
    (Fe0.84Zr0.09B0.07)97Nb3 127.6 512.3 0.962 30.3
    (Fe0.84Zr0.09B0.07)97Ti3 489.5 0.976 29.1
    (Fe0.84Zr0.09B0.07)97Al3 126.7 436.6 0.90 26.4
    DownLoad: CSV

    表 2  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃条带在不同升温速率(10—40 K/min)下的初始晶化温度Tx

    Table 2.  Initial crystallization temperatures of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) metallic glass ribbons at different heating rate (10–40 K/min).

    成分升温速率/ (K·min–1)初始晶化温度Tx /K升温速率/ (K·min–1)初始晶化温度Tx/K
    Fe84Zr9B710854.520859.3
    30866.140868.4
    (Fe0.84Zr0.09B0.07)97Nb310879.820885.2
    30893.140897.1
    (Fe0.84Zr0.09B0.07)Ti97310875.020881.7
    30886.540889.2
    (Fe0.84Zr0.09B0.07)97Al310840.720846.1
    30852.340854.3
    DownLoad: CSV

    表 3  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)的强脆转变系数f, 晶化激活能E, 混合焓$ {\Delta }{{H}}^{\text{chem}} $, 错配熵$ {{S}}_{\sigma}/{{k}}_{\text{B}} $, 混合焓和错配熵乘积的绝对值$ {|\Delta }{{H}}^{\text{chem}}\times{{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $

    Table 3.  The fragile-to-strong trasition parameter (f), the activation energy of crystallization (E), mixing enthalpy (∆Hchem), mismatch entropy (${{S}}_{\sigma}/{{k}}_{\text{B}} $) and their absolute multiplication of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al).

    成分 强脆转变系数f 晶化激活能E 混合焓$ {\Delta }{{H}}^{\text{chem}} $/(kJ·mol–1) 错配熵$ {{S}}_{\sigma}/{{k}}_{\text{B}} $ $ {|\Delta }{{H}}^{\text{chem}}\times{{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $
    Fe84Zr9B7 5.13 413.8 –12.9 0.219 2.82
    (Fe0.84Zr0.09B0.07)97Nb3 4.21 512.3 –14.1 0.227 3.20
    (Fe0.84Zr0.09B0.07)97Ti3 4.29—4.46 489.5 –14.2 0.227 3.22
    (Fe0.84Zr0.09B0.07)97Al3 4.80 436.6 –13.6 0.219 2.97
    DownLoad: CSV
  • [1]

    Tschumi A, Laubscher T, Jeker R, Schüpfer E, Künzi H U, Güntherodt H J 1984 J. Non-Cryst. Solids 61-62 1091

    [2]

    Warlimont H 1988 Mater. Sci. Eng. 99 1Google Scholar

    [3]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [4]

    Hofmann D C, Polit-Casillas R, Roberts S N, Borgonia J P, Dillon R P, Hilgemann E, Kolodziejska J 2016 Sci. Rep. 6 37773Google Scholar

    [5]

    Telford M 2004 Mater. Today 7 36

    [6]

    Wang G H, He A N, Dong Y Q, Li J W 2023 J. Mater. Sci. : Mater. Electron. 34 545Google Scholar

    [7]

    Wang R B, Jia J L, Wu Y, Guo W H, Chen N, Shao Y, Yao K F 2024 Sci. China-Phys. Mech. Astron. 67 116111Google Scholar

    [8]

    胡丽娜, 王铮 2024 液态金属及遗传性 (北京: 化学工业出版社) 第16页

    Hu L N, Wang Z 2024 Liquid Metal and Heritability (Beijing: Chemical Industry Press) p16

    [9]

    Miller C C 1924 Proc. R. Soc. A 106 724

    [10]

    Angell C A 1995 Science 267 1924Google Scholar

    [11]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar

    [12]

    Johnson W L 1999 MRS Bull. 24 42Google Scholar

    [13]

    Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508Google Scholar

    [14]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [15]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492Google Scholar

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508Google Scholar

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401Google Scholar

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508Google Scholar

    [19]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246Google Scholar

    [20]

    Zhai X T, Chu W, Bai Y W, Zhao S, Dong B S, Liu Y H, Hu L N 2024 Scripta Mater. 243 115982Google Scholar

    [21]

    Jagla E A 1999 J. Phys. : Condens. Matter 11 10251Google Scholar

    [22]

    Hajime T 2003 J. Phys. : Condens. Matter 15 L703Google Scholar

    [23]

    Wang T, Hu L N, Liu Y H, Hui X D 2019 Mater. Sci. Eng: A 744 316Google Scholar

    [24]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508Google Scholar

    [25]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258Google Scholar

    [26]

    Wu Y C, Yan L, Liu J F, Qiu H, Deng B, Wang D P, Shi R H, Chen Y, Guan P F 2024 Mater. Today Commun. 40 109440Google Scholar

    [27]

    Chen X P, Zheng Z G, Chen Y B, Qiu Z G, Zeng D C 2025 Physica B 713 417362Google Scholar

    [28]

    Sun Q Y, Zhang K, Zhang S, Chen C, Wei R, Cai Y F, Wu S J, Li F S, Wang T 2024 Intermetallics 182 108781

    [29]

    Huang H Y, Shao G S, Tsakiropoulos P 2008 J. Alloys Compd. 459 185Google Scholar

    [30]

    Bai Y W, Hu L N, Qin J Y, Wang Z, Song K K 2021 J. Non-Cryst. Solids 572 121119Google Scholar

    [31]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339Google Scholar

    [32]

    Tammann G, Hesse W 1926 Z. Anorg. Allg. Chem. 156 245Google Scholar

    [33]

    Avramov I, Milchev A 1988 J. Non-Cryst. Solids 104 253Google Scholar

    [34]

    Vogel H 1921 Physikalische Zeitschrift 22 645

    [35]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. 106 19780Google Scholar

    [36]

    Zheng Q J, Mauro J C, Ellison A J, Potuzak M, Yue Y Z 2011 Phys. Rev. B 83 212202Google Scholar

    [37]

    Komatsu T 1995 J. Non-Cryst. Solids 185 199Google Scholar

    [38]

    Hodge I M 1996 J. Non-Cryst. Solids 202 164Google Scholar

    [39]

    Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217Google Scholar

    [40]

    Busch R, Gallino I 2017 JOM 69 2178Google Scholar

    [41]

    赵茜 2018 硕士学位论文(济南: 山东大学)

    Zhao Q 2018 M. S. Thesis (Ji’nan: Shandong University

    [42]

    周超 2015 硕士学位论文(济南: 山东大学)

    Zhou C 2015 M. S. Thesis (Ji’nan: Shandong University

    [43]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495Google Scholar

    [44]

    Takeuchi A, Inoue A 2000 Mater. Trans. JIM 41 1372Google Scholar

    [45]

    De Boer F R, Mattens W, Boom R, Miedema A, Niessen A 1988 (The U. S. A. and Canada: Elsevier

    [46]

    Smithells C J 2013 Metals reference book: Elsevier

    [47]

    Hyun N J, Demetriou M D, Johnson W L 2011 Appl. Phys. Lett. 99 161902Google Scholar

    [48]

    Blázquez J S, Roth S, Conde A 2005 J. Magn. Magn. Mater. 290-291 1589

    [49]

    Zhao Y B, Bai Y W, Ding Y J, Hu L N 2020 J. Non-Cryst. Solids 537 120020Google Scholar

  • [1] WANG Shoucheng, PAN Qiangqiang, NING Rui, PENG Hailong. Shear Banding Behavior in Soft-Hard Phase Ordered Metallic Glasses. Acta Physica Sinica, doi: 10.7498/aps.74.20250845
    [2] Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Physica Sinica, doi: 10.7498/aps.71.20211304
    [3] Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na. Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, doi: 10.7498/aps.67.20172721
    [4] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176108
    [5] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176102
    [6] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176404
    [7] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176402
    [8] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, doi: 10.7498/aps.66.176403
    [9] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, doi: 10.7498/aps.65.066401
    [10] Cui Xiao, Xu Bao-Chen, Wang Zhi-Zhi, Wang Li-Fang, Zhang Bo, Zu Fang-Qiu. On glass forming ability and thermal stability of Zr57Cu20Al10Ni8Ti5 bulk metallic glass by substituting each component with 1 at% Ag. Acta Physica Sinica, doi: 10.7498/aps.62.016101
    [11] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, doi: 10.7498/aps.61.196202
    [12] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, doi: 10.7498/aps.61.036402
    [13] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.61.036201
    [14] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, doi: 10.7498/aps.61.136401
    [15] Guo Gu-Qing, Yang Liang, Zhang Guo-Qing. Atomic structure of Zr48Cu45Al7 bulk metallic glass. Acta Physica Sinica, doi: 10.7498/aps.60.016103
    [16] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.58.2556
    [17] Xia Ming-Xu, Meng Qing-Ge, Zhang Shu-Guang, Ma Chao-Li, Li Jian-Guo. Thermodynamic characteristics of metallic glass-forming liquids. Acta Physica Sinica, doi: 10.7498/aps.55.6543
    [18] Yu Peng, Bai Hai-Yang, Tang Mei-Bo, Wang Wan-Lu, Wang Wei-Hua. CuZr-based bulk metallic glasses with good glass-forming ability prepared by Al addition. Acta Physica Sinica, doi: 10.7498/aps.54.3284
    [19] Chen Zhi-Hao, Liu Lan-Jun, Zhang Bo, Xi Yun, Wang Qiang, Zu Fang-Qiu. Glass transition kinetic property of novel bulk Zr-Al-Ni-Cu (Nb,Ti) amorphous alloy*. Acta Physica Sinica, doi: 10.7498/aps.53.3839
    [20] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, doi: 10.7498/aps.51.1559
Metrics
  • Abstract views:  350
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2025
  • Accepted Date:  04 August 2025
  • Available Online:  16 August 2025
  • /

    返回文章
    返回