-
The deformation of metallic glasses is generally attributed to the rearrangements of local structures; however, the structural response mechanisms induced by different atomic bond types and cluster motifs during deformation remain unclear. To establish the correlation mechanism between atomic bonding characteristics and local structural evolution during metallic glass deformation, we employed pair distribution function (PDF) analysis of in-situ synchrotron high-energy X-ray total scattering to investigate the local structural evolution of metallic glasses with Pd77.5Cu6Si16.5metal-metalloid (M-Met) and Zr59(Cu0.55Fe0.45)33Al8 metalmetal (M-M) bonding during tensile deformation. Under elastic tensile strain, M-M systems exhibit reduced packing density in both short-range order (SRO) and medium-range order (MRO), and this process is dominated by the medium-range ordered structure, with the overall structure tending to disordering. By contrast, although the overall packing density of SRO and MRO in M-Met systems tends to decrease under strain, cooperative rearrangement of local bonds increases the SRO ordering and this ordering extends to the MRO regime. In the late stage of deformation, its structure gradually tends to disorder, and this response process is dominated by MRO structures. It is found that the bond type significantly affects the changes in interatomic correlation length and local order, thereby modulating microstructural heterogeneity and deformation behavior. These results provide new insight into the microstructural origins of deformation behavior in metallic glasses.
-
Keywords:
- metallic glasses /
- atomic bond types /
- local structural heterogeneity /
- pair distribution function (PDF) analysis
-
[1] Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501
[2] Lan S, Zhu L, Wu Z D, Gu L, Zhang Q H, Kong H H, Liu J Z, Song R Y, Liu S N, Sha G, Wang Y G, Liu Q, Liu W, Wang P Y, Liu C T, Ren Y, Wang X L 2021 Nat. Mater. 20 1347
[3] Liu S N, Wang L F, Ge J, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42
[4] Liu S N, Dong W X, Ren Z Q, Ge J C, Fu S, Wu Z D, Wu J, Lou Y, Zhang W T, Chen H C, Yin W, Ren Y, Neuefeind J, You Z S, Liu Y, Wang X L, Lan S 2023 J. Mater. Sci. Technol. 159 10
[5] Pan J, Ivanov Yu P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559
[6] Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30
[7] Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lv Z P 2017 Acta Phys. Sin. 66 176111 (in Chinese) [吴渊,宋温丽,周捷,曹迪,王辉,刘雄军,吕昭平2005 物理学报 66 176111]
[8] Lan S, Wu Z, Wei X, Zhou J, Lu Z, Neuefeind J, Wang X L 2018 Acta Mater. 149 108
[9] Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679
[10] Li B, Yan M, Wen J, Lou Y, Zhou X, Chen S, Lan S, Feng T 2025 Small 21 e09564
[11] Tan L, Yao Z, Huang J, Lou Y, Zhao Y, Zhu X, Liu S, Zeng J, Zhu H, Lan S 2025 J. Mater. Chem. A 13 12065
[12] H S Chen 1980 Rep. Prog. Phys. 43 353
[13] Kamimura Y, Edagawa K, Takeuchi S 2013 Acta Mater. 61 294
[14] Tong X, Wang G, Stachurski Z H, Bednarčík J, Mattern N, Zhai Q J, Eckert J 2016 Sci. Rep. 6 30876
[15] Dmowski W, Egami T 2007 J. Mater. Res. 22 412
[16] Bian X, Şopu D, Wang G, Sun B, Bednarčik J, Gammer C, Zhai Q, Eckert J 2020 NPG Asia Mater. 12 59
[17] Bian X, Wang G, Wang Q, Sun B, Hussain I, Zhai Q, Mattern N, Bednarčík J, Eckert J 2017 Mater. Res. Lett. 5 284
[18] Inoue A, Chen H S, Krause J T, Masumoto T, Hagiwara M 1983 J. Mater. Sci. 18 2743
[19] Nandam S H, Adjaoud O, Schwaiger R, Ivanisenko Y, Chellali M R, Wang D, Albe K, Hahn H 2020 Acta Mater. 193 252
[20] Zhou Y, Wang T 2024 J. Mater. Res. Technol. 30 256
[21] Dong J, Peng H, Wang H, Tong Y, Wang Y, Dmowski W, Egami T, Sun B, Wang W, Bai H 2023 Nat. Phys. 19 1896
[22] Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33
[23] Im S, Wang Y, Zhao P, Yoo G H, Chen Z, Calderon G, Abbasi Gharacheh M, Zhu M, Licata O, Mazumder B, Muller D A, Park E S, Wang Y, Hwang J 2021 Phys. Rev. Mater. 5 115604
[24] Shen J, Cornet A, Ronca A, Pineda E, Yang F, Garden J L, Moiroux G, Vaughan G, di Michiel M, Garbarino G, Westermeier F, Goujon C, Legendre M, Liu J, Cangialosi D, Ruta B 2025 Sci. Adv. 11 eadz7406
[25] Luo S, Khong J C, Huang S, Yang G, Mi J 2024 Acta Mater. 272 119917
[26] Qiu X, Thompson J W, Billinge S J L 2004 J. Appl. Crystallogr. 37 678
[27] Dong W, Ge J, Ke Y, Ying H, Zhu L, He H, Liu S, Lu C, Lan S, Almer J, Ren Y, Wang X L 2020 J. Alloy. Compd. 819 153049
[28] Lan S, Blodgett M, Kelton K F, Ma J L, Fan J, Wang X L 2016 Appl. Phys. Lett. 108 211907
[29] Ryu C W, Egami T 2021 Phys. Rev. E 104 064109
[30] Egami T, Billinge S J L 2003 Underneath the Bragg peaks: structural analysis of complex materials (Kiddington, Oxford, UK Boston: Pergamon)
[31] Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104
[32] Ma D, Stoica A D, Yang L, Wang X L, Lu Z P, Neuefeind J, Kramer M J, Richardson J W, Proffen Th 2007 Appl. Phys. Lett. 90 211908
[33] Dimitrov D A, Röder H, Bishop A R 2001 Phys. Rev. B 64 014303
[34] Miracle D B 2004 Nat. Mater. 3 697
[35] Shakur Shahabi H, Scudino S, Kaban I, Stoica M, Rütt U, Kühn U, Eckert J 2015 Acta Mater. 95 30
[36] Huang Y, Khong J C, Connolley T, Mi J 2014 Int. J. Plast. 60 87
[37] Srolovitz D, Egami T, Vitek V 1981 Phys. Rev. B 24 6936
[38] Hufnagel T C, Ott R T, Almer J 2006 Phys. Rev. B 73 064204
[39] Ding J, Ma E, Asta M, Ritchie R O 2015 Sci. Rep. 5 17429
[40] Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502
[41] Tong X, Wang G, Bednarčík J, Jia Y D, Hussain I, Yi J, Stachurski Z H, Zhai Q J 2018 Mater. Sci. Eng. A 721 8
[42] Wang L, Zhao Y, Wang L, Nie Z, Wang B, Xue Y, Zhang H, Fu H, Brown D E, Ren Y 2018 Scr. Mater. 149 112
[43] Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, Liu R P 2018 Mater. Des. 158 248
Metrics
- Abstract views: 42
- PDF Downloads: 3
- Cited By: 0









下载: