-
Shear banding behavior of metallic glasses (MGs) strongly correlates with the microstructural heterogeneity. Understanding how the nucleation and propagation of shear bands governed by the nanoscale structural heterogeneity are crucial for designing high-performance MGs. Herein, we utilized conventional Molecular dynamics (MD) and swap Monte Carlo (SMC) simulations to construct two phases of CuZr metallic glasses: one the soft phase with a high cooling rate about 1013 K/s, and the other one the hard phase with a extremely low cooling rate in simulations about 104 K/s. The soft phase is more prone to the plastic deformation due to the poor population of icosahedral clusters; the hard phase is of more icosahedral clusters, promoting shear localization once the shear bands form inside. We found a ductileto-brittle transition in the soft-and-hard phase ordered MGs with the increment of the hard-region fraction c. Additionally, the strategy of how to order these two phases could strongly affect the mechanical behavior of MGs. Dispersive and isolated hard-regions can enhance the mechanical stability of MGs, delaying the occurrence of shear banding. Instead, surrounding soft regions by hard regions can induce a secondary shear band that formed through the reorientation of plastic zones under constrained deformation, leading to a relatively more delocalized plastic deformation zones. The work unveils that the structural heterogeneity achieved by tuning the topology of soft and hard phase can significantly change the mechanical performance of MGs, and this could guide the design of metallic glasses with controllable structures via architectural ordering strategies.
-
Keywords:
- Metallic glasses /
- Order modulation /
- Molecular-dynamics simulations /
- Shear banding
-
[1] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R-Rep. 44 45
[2] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
[3] Kruzic J J 2016 Adv. Eng. Mater. 18 1308
[4] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[5] Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501
[6] Argon A S 1979 Acta Metall. 27 47
[7] Falk M L, Langer J S 1998 Phys. Rev. E 57 7192
[8] Priezjev N V 2017 Phys. Rev. E 95 023002
[9] Cubuk E D, Ivancic R J S, Schoenholz S S, Strickland D J, Basu A, Davidson Z S, Fontaine J, Hor J L, Huang Y R, Jiang Y, Keim N C, Koshigan K D, Lefever J A, Liu T, Ma X G, Magagnosc D J, Morrow E, Ortiz C P, Rieser J M, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom K N, Arratia P E, Carpick R W, Durian D J, Fakhraai Z, Jerolmack D J, Lee D, Li J, Riggleman R, Turner K T, Yodh A G, Gianola D S, Liu A J 2017 Science 358 1033
[10] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250
[11] Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103 (in Chinses) [王峥, 汪卫华 2017 物理学报 66 176103]
[12] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240
[13] Wang Q, Shang Y H, Yang Y 2023 Mater. Futures 2 017501
[14] Lu X Q, Feng S D, Li L, Wang L M, Liu R P 2023 J. Phys. Chem. Lett. 14 6998
[15] Vollmayr K, Kob W, Binder K 1996 J. Chem. Phys. 105 4714
[16] Liu Y, Bei H, Liu C T, George E P 2007 Appl. Phys. Lett. 90 071909
[17] Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105
[18] Ryltsev R E, Klumov B A, Chtchelkatchev N M, Shunyaev K Y 2016 J. Chem. Phys. 145 034506
[19] J. A, Bouchbinder E, Procaccia I 2013 Phys. Rev. E 87 042310
[20] Fan M, Wang M L, Zhang K, Liu Y H, Schroers J, Shattuck M D, O’Hern C S 2017 Phys. Rev. E 95 022611
[21] Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L 2012 Phys. Rev. B 85 184203
[22] Grigera T S, Parisi G 2001 Phys. Rev. E 63 045102
[23] Berthier L, Coslovich D, Ninarello A, Ozawa M 2016 Phys. Rev. Lett. 116 238002
[24] Ninarello A, Berthier L, Coslovich D 2017 Phys. Rev. X 7 021039
[25] Parmar A D S, Ozawa M, Berthier L 2020 Phys. Rev. Lett. 125 085505
[26] Zhang Z, Ding J, Ma E 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2213941119
[27] Yu J H, Zhang Z, Sha Z D, Ding J, Greer A L, Ma E Proc. Natl. Acad. Sci. U.S.A. 122 e2427082122
[28] Luo Q, Cui W R, Zhang H P, Li L L, Shao L L, Cai M J, Zhang Z G, Xue L, Shen J, Gong Y, Li X D, Li M Z, Shen B L 2023 Mater. Futures 2 025001
[29] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, Popel P 2009 Philos. Mag. 89 967
[30] Sadigh B, Erhart P 2012 Phys. Rev. B 86 134204
[31] Maloney C E, Lemaître A 2006 Phys. Rev. E 74 016118
[32] Plimpton S 1995 J. Comput. Phys. 117 1
[33] Barlow H J, Cochran J O, Fielding S M 2020 Phys. Rev. Lett. 125 168003
[34] Cui S H, Liu H S, Peng H L 2022 Phys. Rev. E 106 014607
[35] Dasgupta R, Mishra P, Procaccia I, Samwer K 2013 Appl. Phys. Lett. 102 191904
[36] Liu Y, Liu H S, Peng H L 2023 J. Non-Cryst. Solids 601 122052
[37] Liu Y, Yan Z H, Liu H S, Shang B S, Peng H L 2024 Phys. Rev. B 109 054115
[38] Li M Z 2017 Acta Phys. Sin. 66 176107 (in Chinses) [李茂枝 2017 物理学报 66 176107]
[39] Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503
[40] Eshelby J D 1957 Proc. R. Soc. London, Ser. A 241 376
[41] Tang X C, Deng J R, Meng L Y, Yao X H 2025 Int. J. Plast. 189 104323
Metrics
- Abstract views: 255
- PDF Downloads: 3
- Cited By: 0