Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Progress on the Creation of High-Frequency Amorphous-based Soft Magnetic Materials by Order Modulation Engineering

Huaping Ding Lichen Liu Liliang Shao Jing Zhou Dingrong Zuo Haibo Ke Weihua Wang

Citation:

Research Progress on the Creation of High-Frequency Amorphous-based Soft Magnetic Materials by Order Modulation Engineering

Huaping Ding, Lichen Liu, Liliang Shao, Jing Zhou, Dingrong Zuo, Haibo Ke, Weihua Wang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The rapid advancement of modern electronics, telecommunications, and artificial intelligence has driven an urgent demand for high-performance soft magnetic materials, particularly those compatible with third-generation semiconductors. These semiconductors, characterized by wide bandgaps, high breakdown fields, and superior thermal conductivity, enable power devices to operate at higher frequencies (>1 MHz) and power densities. However, traditional soft magnetic materials, such as silicon steels and ferrites, face inherent trade-offs between critical properties: saturation magnetization (Bs) versus coercivity (Hc), permeability versus core loss, and mechanical strength versus magnetic "softness." These limitations hinder their application in emerging high-frequency, high-efficiency scenarios. Amorphous soft magnetic materials, with their unique hierarchical ordered structures spanning atomic to nanoscales, offer a revolutionary platform to overcome these trade-offs. These materials exhibit rich physical properties governed by short-range order (SRO, <0.5 nm), medium-range order (MRO, 0.5-2 nm), and amorphous-nanocrystalline dual-phase architectures. The concept of order modulation—strategically tailoring the intrinsic characteristics (e.g., cluster density, topological configuration) and spatial arrangements of these ordered structures—has emerged as a transformative approach to decoupling conflicting material properties. This review systematically examines the following key aspects:
    1. Historical evolution of soft magnetic materials
    From early silicon steels and ferrites to modern amorphous and nanocrystalline alloys, the development of soft magnetic materials has paralleled advancements in power electronics. The advent of Fe-based amorphous alloys and Finemet-type nanocrystalline alloys marked milestones in achieving high Bs (>1.6 T), ultra-low Hc (<1 A/m), and reduced core losses at high frequencies. However, performance bottlenecks persist near theoretical limits, necessitating innovative strategies.
    2. Theoretical foundations of order modulation
    Order parameter theory: Landau’s phase transition theory and synergetics elucidate how magnetic order parameters govern macroscopic properties. In amorphous alloys, magnetic interactions are dominated by SRO clusters and their MRO arrangements.
    Magnetism-structure relationships: advanced techniques, such as atomic electron tomography (AET) and synchrotron pair distribution function (PDF) analysis, reveal that SRO/MRO structures directly influence exchange coupling, magnetic anisotropy, and domain wall dynamics. For instance, Fe-M (M = Si, B) clusters with dense packing enhance Bs, while MRO homogenization reduces Hc.
    3. Advances in order-modulated amorphous soft magnetic materials
    Atomic-scale modulation: elemental doping (e.g., Co, Mo, Cu) and energy-field treatments (e.g., magnetic annealing, ultrasonic vibration) optimize local atomic configurations. For example, ultrasonic processing of Fe78Si9B13 ribbons induces stress relaxation, forming 2-3 nm Fe-M clusters that boost Bs to 183.2 emu/g while maintaining Hc at 4.2 A/m.
    Nanoscale dual-phase design: controlled crystallization of α-Fe(Si) nanocrystals (<15 nm) within an amorphous matrix creates exchange-coupled nanocomposites. Co-Mo co-doping in FeSiBCuNb alloys refines grain size to 11.8 nm, achieving a permeability of 65,000 at 100 kHz—44% higher than conventional Finemet alloys.
    Interface engineering in soft magnetic composites (SMCs): core-shell architectures (e.g., FeSiB@FeB nanoparticles) with stress-buffering interfaces reduce eddy current losses while preserving permeability. Cold sintering of vortex-domain FeSiAl powders enables GHz-range operation with stable permeability (μi=13 at 1 GHz).
    4. Future directions and challenges
    Machine learning-driven design: integrating high-throughput simulations and AI models (e.g., XGBoost, random forests) accelerates the discovery of optimal compositions and order parameters. Recent work predicts Bs using Fe content, mixing enthalpy, and electronegativity differences, guiding the synthesis of (Fe82Co18)85.5Ni1.5B9P3C1 alloys with Bs =1.92 T.
    Novel magnetic topologies: magnetic vortex structures and skyrmion-like configurations in ultrafine powders show promise for ultra-high-frequency applications (>100 MHz).
    Low-stress manufacturing: innovations like ultrasonic rheoforming reduce compaction pressures by 99% (to 6.2 MPa), mitigating residual stress and enhancing SMC performance.
    In situ characterization: neutron scattering and grating-based imaging techniques enable real-time observation of domain dynamics under operational conditions (e.g., stress, magnetic fields).
    In conclusion, order modulation represents a paradigm shift in soft magnetic material design, bridging atomic-scale interactions to macroscopic performance. By leveraging multi-scale ordered structures and advanced manufacturing technologies, next-generation amorphous-based materials are poised to revolutionize high-frequency power electronics, electric vehicles, and AI-driven systems. However, challenges in scalable production, cost-effective processing, and standardized evaluation must be addressed to accelerate industrial adoption.
  • [1]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 eaao0195

    [2]

    Yu Q 2024 Highlights in Science, Engineering and Technology 81 484

    [3]

    Wang H, Lamichhane T N, Paranthaman M P 2022 Mat. Today Phys. 24 100675

    [4]

    Herzer G 2013 Acta Mater. 61 718

    [5]

    Talaat A, Suraj M V, Byerly K, Wang A, Wang Y, Lee J K, Ohodnicki Jr P R 2021 J. Alloys Compd. 870 159500

    [6]

    Rafin S S H, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 Micromachines 14 2045

    [7]

    Perigo E A, Weidenfeller B, Kollár P, Füzer J 2018 Appl. Phys. Rev. 5 031301

    [8]

    Li X S, Zhou J, Shen L Q, Sun B A, Bai H Y, Wang W H 2023 Adv. Mater. 35 2205863

    [9]

    Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H, Bai H Y 2023 Adv. Mater. 35 2304490

    [10]

    Oumsalem A, Bourezig Y, Nabi Z, Bouabdallah B 2018 Turk. J. Electr. Eng. Compu. Sci. 26 1249

    [11]

    Zhang H T, Zhang T, Zhang X 2023 Adv. Sci. 10 2300193

    [12]

    Shao L L, Luo Q, Zhang M J, Xue L, Cui J X, Yang Q Z, Ke H B, Zhang Y, Shen B L, Wang W H 2024 Nat. Commun. 15 4159

    [13]

    Ke H B, Zhou J, Tong X, Wang W H 2024 Science and Technology Review 42 1 (柯海波, 周靖, 童星, 汪卫华 2024 科技导报 42 1)

    [14]

    Cowley R 1980 Adv. Phys. 29 1

    [15]

    Natarajan A R, Thomas J C, Puchala B, Van der Ven A 2017 Phys. Rev. B 96 134204

    [16]

    Jiang Q, Wen Z, Jiang Q, Wen Z 2011 Thermodynamics of Materials (Springer) pp157-206

    [17]

    Zhang H 2022 Models and Methods for Management Science (Springer) pp301-361

    [18]

    Haken H 1973 Synergetics: Cooperative phenomena in multi-component systems (Springer) pp9-21

    [19]

    Haken H 1989 Rep. Prog. Phys. 52 515

    [20]

    Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233

    [21]

    Zeeman E C 1976 Sci. Am. 234 65

    [22]

    Zhang E, Zhou B, Yang L, Li C, Li P 2023 Trans. Soc. Min. Metall. Explor. 40 1865

    [23]

    Ren J L, Yu L P, Zhang L Y 2017 Acta Phys. Sin-CH ED 66 176402 (任景莉, 于利萍, 张李盈 2017 物理学报 66 176402)

    [24]

    Machida Y, Nakatsuji S, Onoda S, Tayama T, Sakakibara T 2010 Nature 463 210

    [25]

    Laughlin D E 2019 Metall. Mater. Trans. A 50 2555

    [26]

    Alonso J 2000 Chem. Rev. 100 637

    [27]

    Filbet F, Xiong T, Sonnendrucker E 2018 SIAM J. Appl. Math. 78 1030

    [28]

    Anderson P 1950 Phys. Rev. 79 705

    [29]

    Stepanov E, Brener S, Krien F, Harland M, Lichtenstein A, Katsnelson M 2018 Phys. Rev. Lett. 121 037204

    [30]

    Stöhr J, Siegmann H C 2006 Magnetism: From Fundamentals to Nanoscale Dynamics (Springer) pp479-520

    [31]

    Hosseini M V, Askari M 2015 Phys. Rev. B 92 224435

    [32]

    Kosarim A, Smirnov B 2005 J. Exp. Theor. Phys. 101 611

    [33]

    Bernal J 1960 Nature 185 68

    [34]

    Bernal J D 1959 Nature 183 141

    [35]

    Luo W, Sheng H, Alamgir F, Bai J, He J, Ma E 2004 Phys. Rev. Lett. 92 145502

    [36]

    Lan S, Zhu L, Wu Z, Gu L, Zhang Q, Kong H, Liu J, Song R, Liu S, Sha G, Wang Y G, Liu Q, Liu W, Wang P Y, Liu C T, Ren Y, Wang X L 2021 Nat. Mater. 20 1347

    [37]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404

    [38]

    Ye J, Lu J, Liu C, Wang Q, Yang Y 2010 Nat. Mater. 9 619

    [39]

    Miracle D B 2004 Nat. Mater. 3 697

    [40]

    Sheng H, Luo W, Alamgir F, Bai J, Ma E 2006 Nature 439 419

    [41]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [42]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard III W A, Greer J R 2015 Science 349 1306

    [43]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M W 2011 Nat. Mater. 10 28

    [44]

    Yang Y, Zhou J H, Zhu F, Yuan Y K, Chang D J, Kim D S, Pham M, Rana A, Tian X Z, Yao Y G, Osher S J, Schmid A K, Hu L B, Ercius P, Miao J W 2021 Nature 592 60

    [45]

    Tang J, Xiang H P, Xu L, Qu S J, Feng A H, Li N, Ping D H 2025 Metals 15 98

    [46]

    Ge J C, Gu Y, Yao Z Z, Liu S N, Ying H Q, Lu C Y, Wu Z D, Ren Y, Suzuki J, Xie Z H, Ke Y B, Zeng J R, Zhu H, Tang S, Wang X L, Lan S 2024 J. Mater. Sci. Technol. 176 224

    [47]

    Bai Y W, Li J C, Zhang J, Dong B S, Li X X, Zhao X L, Cui Z H, Li T, Hu L N 2024 J. Non-Cryst. Solids 624 122705

    [48]

    Tian H, Zhang C, Zhao J, Dong C, Wen B, Wang Q 2012 Physica B 407 250

    [49]

    Geng Y X, Wang Y M 2020 Acta Metall. Sinica 56 1558 (耿遥祥, 王英敏 2020 金属学报 56 1558)

    [50]

    Shi L X, Shao Y, Fan Z Y, Wang R B, Lu C Y, Yao K F 2023 Acta Mater. 254 118983

    [51]

    Zhao C, Wang A, He A, Chang C, Liu C T 2021 Sci. China Mater. 64 1813

    [52]

    Li H Z, Sohrabi S, Li X, Li L Y, Ma J, Peng H L, Yang C 2025 Rare Met. 44 2853

    [53]

    Wang C, Wu Z, Feng X, Li Z, Gu Y, Zhang Y, Tan X, Xu H 2020 Intermetallics 118 106689

    [54]

    Lu S, Wang M, Zhao Z 2023 J. Non-Cryst. Solids 616 122440

    [55]

    Shao L L, Bai R S, Wu Y X, Zhou J, Tong X, Peng H L, Liang T, Li Z Z, Zeng Q S, Zhang B, Ke H B, Wang W H 2024 Materials Futures 3 025301

    [56]

    Hu Y P, Ping K B, Run Z J, Yang W, Gong C W 2011 Acta Physica Sinica 60 642 (胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟 2011 物理学报 60 642)

    [57]

    (Elsevier)

    [58]

    (Elsevier)

    [59]

    Li Y, Jia X, Zhang W, Zhang Y, Xie G, Qiu Z, Luan J, Jiao Z 2021 J. Mater. Sci. Technol. 65 171

    [60]

    Xi G G, Sun C, Han M H, Li H G, Cui J L, Zhang T 2024 J. Non-Cryst. Solids 633 122951

    [61]

    Han M H, Sun C, Xi G G, Meng Y, Luo Q, Yu X Q, Zhang W F, Liu H, Xu H J, Zhang T 2024 Rare Met. 43 5242

    [62]

    Yoshizawa Y a, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044

    [63]

    Li H, Wang A, Liu T, Chen P, He A, Li Q, Luan J, Liu C T 2021 Mater. Today 42 49

    [64]

    Duan L, Wang K, Wang E, Jia P 2021 Acta Metall. Sinica (English Letters) 34 1163

    [65]

    Jia P, Wang E G, Han K 2016 Materials 9 899

    [66]

    Chen S F, Chen C Y, Cheng C S 2015 J. Alloys Compd. 644 17

    [67]

    Zhou B, Dong Y, Chi Q, Zhang Y, Chang L, Gong M, Huang J, Pan Y, Wang X 2020 Ceram. Int. 46 13449

    [68]

    Zhou B, Dong Y, Liu L, Chang L, Bi F, Wang X 2019 J. Magn. Magn. Mater. 474 1

    [69]

    Lu S, Liu T, Wang M, Zhao Z 2025 J. Alloys Compd. 1016 178874

    [70]

    Ma R, Chang L, Ye S, Xie H, Xiao Q, Zhang L, Si J, Yu P 2023 Powder Technol. 426 118639

    [71]

    Bai R, Shao L, Ding H, Li X, Zhou J, Xue Z, Ke H, Wang W 2025 J. Mater. Sci. Technol. 211 82

    [72]

    Zhou B, Chi Q, Dong Y, Liu L, Zhang Y, Chang L, Pan Y, He A, Li J, Wang X 2020 J. Magn. Magn. Mater. 494 165827

    [73]

    Chi Q, Chang L, Dong Y, Zhang Y, Zhou B, Zhang C, Pan Y, Li Q, Li J, He A 2021 Adv. Powder Technol. 32 1602

    [74]

    Ding H P, Gong P, Chen W, Peng Z, Bu H T, Zhang M, Tang X F, Jin J S, Deng L, Xie G Q 2023 Int. J. Plast. 169 103711

    [75]

    Ding H P, Bao X Q, Jamili-Shirvan Z, Jin J S, Deng L, Yao K F, Gong P, Wang X Y 2021 Mater. Des. 210 110108

    [76]

    Ding H P, Bao X Q, Zhang M, Jin J S, Deng L, Yao K F, Solouk A, Gong P, Wang X Y 2023 Adv. Powder Mater. 2 100109

    [77]

    Yang S Y, Zang B W, Xiang M L, Shen F Y, Song L J, Gao M, Zhang Y, Huo J T, Wang J Q 2025 Adv. Funct. Mater. 2425588

    [78]

    Yan M, Yi S B, Fan X Y, Zhang Z H, Jin J Y, Bai G H 2021 J. Mater. Sci. Technol. 79 165

    [79]

    Li W C, Han X F, Li Q, Wu J K, Li W J, Zhan H C, Ying Y, Yu J, Zheng J W, Qiao L, Li J, Che S L 2023 J. Alloys Compd. 936 168164

    [80]

    Bai G H, Sun J Y, Zhang Z H, Liu X L, Bandaru S, Liu W W, Li Z, Li H X, Wang N N, Zhang X F 2024 Nat. Commun. 15 2238

    [81]

    Li H Z, Yan Y Q, Cai W S, Li L Y, Yan A, Liu L H, Ma J, Ke H B, Li Q, Sun B A, Wang W H, Yang C 2024 Nat. Commun. 15 9510

    [82]

    Betz B, Rauscher P, Harti R, Schäfer R, Van Swygenhoven H, Kaestner A, Hovind J, Lehmann E, Grünzweig C 2016 Appl. Phys. Lett. 108 012405

    [83]

    Reimann T, Mühlbauer S, Schulz M, Betz B, Kaestner A, Pipich V, Böni P, Grünzweig C 2015 Nat. Commun. 6 8813

    [84]

    Strobl M, Betz B, Harti R, Hilger A, Kardjilov N, Manke I, Gruenzweig C 2016 J. Appl. Crystallogr. 49 569

    [85]

    Weiss H A, Steentjes S, Tröber P, Leuning N, Neuwirth T, Schulz M, Hameyer K, Golle R, Volk W 2019 J. Magn. Magn. Mater. 474 643

    [86]

    Strobl M 2014 Sci. Rep. 4 7243

    [87]

    Grünzweig C, David C, Bunk O, Dierolf M, Frei G, Kühne G, Schäfer R, Pofahl S, Rønnow H, Pfeiffer F 2008 Appl. Phys. Lett. 93 112504

  • [1] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, doi: 10.7498/aps.73.20231421
    [2] Xiao Dong-Dong, Gu Lin. Picoscale structure of functional materials constructed by functional units. Acta Physica Sinica, doi: 10.7498/aps.72.20230045
    [3] Miao Pei-Xian, Wang Tao, Shi Yan-Chao, Gao Cun-Xu, Cai Zhi-Wei, Chai Guo-Zhi, Chen Da-Yong, Wang Jian-Bo. Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.71.20221618
    [4] Sun Yi-Tao, Wang Chao, Lü Yu-Miao, Hu Yuan-Chao, Luo Peng, Liu Ming, Xian Hai-Jie, Zhao De-Qian, Ding Da-Wei, Sun Bao-An, Pan Ming-Xiang, Wen Ping, Bai Hai-Yang, Liu Yan-Hui, Wang Wei-Hua. Recent progress of the glassy materials and physics. Acta Physica Sinica, doi: 10.7498/aps.67.20180681
    [5] Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica, doi: 10.7498/aps.67.20171473
    [6] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.66.176109
    [7] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176113
    [8] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176112
    [9] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176106
    [10] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176104
    [11] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, doi: 10.7498/aps.66.186101
    [12] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.178101
    [13] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176103
    [14] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176409
    [15] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176110
    [16] Yu Hong-Yun. Effect of superconducting magnet remanence on the soft magnetic material measurements. Acta Physica Sinica, doi: 10.7498/aps.63.047502
    [17] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, doi: 10.7498/aps.60.097502
    [18] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, doi: 10.7498/aps.56.999
    [19] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, doi: 10.7498/aps.55.2553
    [20] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, doi: 10.7498/aps.54.3862
Metrics
  • Abstract views:  98
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  27 May 2025

/

返回文章
返回