Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Picoscale structure of functional materials constructed by functional units

Xiao Dong-Dong Gu Lin

Citation:

Picoscale structure of functional materials constructed by functional units

Xiao Dong-Dong, Gu Lin
PDF
HTML
Get Citation
  • Structure design and performance regulation of functional materials are the cutting-edge hot topic in the field of materials science and condensed mater physics. Constructing hierarchical structures with functional units recently has become a new paradigm to improve the functionality of functional materials and explore new physical phenomena. Understanding the origin of physical properties of functional materials constructed by functional units requires us to precisely characterize the structure, configuration and spatial patterns of functional units, and their couplings. Aberration-corrected transmission electron microscopy has proven to be powerful in revealing the atomic structure, chemistry and electronic configuration of the functional materials with low symmetry and complex compositions, which provides a new avenue to reveal the functional units and their spatial patterns with high precision from different aspects and finally establish the structure-propertys relationship. In this paper, we summarize the inherent characteristics of typical functional units with different sizes, and the hierarchical structures constructed by functional units at the picoscale, by which the relationship between structures and functionality is revealed. The breakthrough and development of aberration-corrected transmission electron microscopy lays a solid foundation for understanding the origin of functionality of new materials constructed by functional units.
      Corresponding author: Gu Lin, l.gu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. Z190010).
    [1]

    Ritchie R O 2011 Nat. Mater. 10 817Google Scholar

    [2]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [3]

    Chen K, Li L 2019 Adv. Mater. 31 1901115

    [4]

    Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [5]

    Chen J, Chen H, Xu F, Cao L, Jiang X, Yang S, Sun Y, Zhao X, Lin C, Ye N 2021 J. Am. Chem. Soc. 143 10309Google Scholar

    [6]

    Liu B, Jiang X, Li B, Zeng H, Guo G 2020 Angew. Chem. Int. Ed. 59 4856Google Scholar

    [7]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [8]

    Takenaka H, Grinberg I, Liu S, Rappe A M 2017 Nature 546 391Google Scholar

    [9]

    Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [10]

    Li H, Li X, Guo D, Lou L, Li W, Zhang X 2016 Nano Lett. 16 5631Google Scholar

    [11]

    Li X, Lou L, Li Y, Zhang G, Hua Y, Li W, Zhang H T, Yue M, Zhang X 2022 Nano Lett. 22 7644Google Scholar

    [12]

    Zhang H T, Zhang X 2022 Mater. Res. Lett. 10 1Google Scholar

    [13]

    Li Z, Li Y, Zhang M, Yin Z W, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G, Pan F 2021 Adv. Energy Mater. 11 2101962Google Scholar

    [14]

    Liu J, Qi R, Zuo C, Lin C, Zhao W, Yang N, Li J, Lu J, Chen X, Qiu J, Chu M, Zhang M, Dong C, Xiao Y, Chen H, Pan F 2021 Nano Energy 88 106252Google Scholar

    [15]

    Mundy J A, Brooks C M, Holtz M E, Moyer J A, Das H, Rébola A F, Heron J T, Clarkson J D, Disseler S M, Liu Z, Farhan A, Held R, Hovden R, Padgett E, Mao Q, Paik H, Misra R, Kourkoutis L F, Arenholz E, Scholl A, Borchers J A, Ratcliff W D, Ramesh R, Fennie C J, Schiffer P, Muller D A, Schlom D G 2016 Nature 537 523Google Scholar

    [16]

    Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J, Xie Y 2021 Phys. Rev. Lett. 126 026802Google Scholar

    [17]

    Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [18]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [19]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [20]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [21]

    Ismail-Beigi S, Walker F J, Disa A S, Rabe K M, Ahn C H 2017 Nat. Rev. Mater. 2 17060Google Scholar

    [22]

    Xiao D, Gu L 2020 Nano Select 1 183Google Scholar

    [23]

    Ruska E 1987 Rev. Mod. Phys. 59 627Google Scholar

    [24]

    Pennycook S J 2017 Ultramicroscopy 180 22Google Scholar

    [25]

    Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Ikuhara Y 2010 Ultramicroscopy 110 903Google Scholar

    [26]

    Lazić I, Bosch E G T, Lazar S 2016 Ultramicroscopy 160 265Google Scholar

    [27]

    Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, Voyles P M 2014 Nat. Commun. 5 4155Google Scholar

    [28]

    Suenaga K, Sato Y, Liu Z, Kataura H, Okazaki T, Kimoto K, Sawada H, Sasaki T, Omoto K, Tomita T, Kaneyama T, Kondo Y 2009 Nat. Chem. 1 415Google Scholar

    [29]

    Suenaga K, Okazaki T, Okunishi E, Matsumura S 2012 Nature Photon. 6 545Google Scholar

    [30]

    Kisielowski C, Hetherington C J D, Wang Y C, Kilaas R, O’Keefe M A, Thust A 2001 Ultramicroscopy 89 243Google Scholar

    [31]

    Bals S, Aert S V, Tendeloo G V, Ávila-Brande D 2006 Phys. Rev. Lett. 96 096106Google Scholar

    [32]

    Jin L, Barthel J, Jia C L, Urban K W 2017 Ultramicroscopy 176 99Google Scholar

    [33]

    Gauquelin N, van den Bos K H W, Béché A, Krause F F, Lobato I, Lazar S, Rosenauer A, Van Aert S, Verbeeck J 2017 Ultramicroscopy 181 178Google Scholar

    [34]

    Morishita S, Ishikawa R, Kohno Y, Sawada H, Shibata N, Ikuhara Y 2017 Microscopy 67 46

    [35]

    Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E 2011 Nat. Mater. 10 278Google Scholar

    [36]

    Gao P, Kumamoto A, Ishikawa R, Lugg N, Shibata N, Ikuhara Y 2018 Ultramicroscopy 184 177Google Scholar

    [37]

    Yücelen E, Lazić I, Bosch E G T 2018 Sci. Rep. 8 2676Google Scholar

    [38]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [39]

    Sha H, Cui J, Yu R 2022 Sci. Adv. 8 eabn2275Google Scholar

    [40]

    Rondinelli J M, May S J, Freeland J W 2012 MRS Bulletin 37 261Google Scholar

    [41]

    Yan Q, Yu J, Suram S K, Zhou L, Shinde A, Newhouse P F, Chen W, Li G, Persson K A, Gregoire J M, Neaton J B 2017 Proc. Natl. Acad. Sci. U. S. A. 114 3040Google Scholar

    [42]

    Banjade H R, Hauri S, Zhang S, Ricci F, Gong W, Hautier G, Vucetic S, Yan Q Sci. Adv. 7 eabf1754

    [43]

    Rao C N R, Cheetham A K 1996 Science 272 369Google Scholar

    [44]

    Bednorz J G, Müller K A 1988 Rev. Mod. Phys. 60 585Google Scholar

    [45]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [46]

    Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105Google Scholar

    [47]

    Gao Y, Wang J, Wu L, Bao S, Shen Y, Lin Y, Nan C 2015 Sci. China Mater. 58 302Google Scholar

    [48]

    Moon E J, Colby R, Wang Q, Karapetrova E, Schlepütz C M, Fitzsimmons M R, May S J 2014 Nat. Commun. 5 5710Google Scholar

    [49]

    Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, van Tendeloo G, Held K, Sawatzky G A, Koster G, Rijnders G 2016 Nat. Mater. 15 425Google Scholar

    [50]

    Liao Z, Gauquelin N, Green R J, Müller-Caspary K, Lobato I, Li L, Van Aert S, Verbeeck J, Huijben M, Grisolia M N, Rouco V, El Hage R, Villegas J E, Mercy A, Bibes M, Ghosez P, Sawatzky G A, Rijnders G, Koster G 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9515Google Scholar

    [51]

    Lin S, Zhang Q, Sang X, Zhao J, Cheng S, Huon A, Jin Q, Chen S, Chen S, Cui W, Guo H, He M, Ge C, Wang C, Wang J, Fitzsimmons M R, Gu L, Zhu T, Jin K, Guo E 2021 Nano Lett. 21 3146Google Scholar

    [52]

    Li S, Zhang Q, Lin S, Sang X, Need R F, Roldan M A, Cui W, Hu Z, Jin Q, Chen S, Zhao J, Wang J, Wang J, He M, Ge C, Wang C, Lu H, Wu Z, Guo H, Tong X, Zhu T, Kirby B, Gu L, Jin K, Guo E 2021 Adv. Mater. 33 2001324Google Scholar

    [53]

    Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M, Eom C B 2016 Nature 533 68Google Scholar

    [54]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [55]

    Meng M, Wang Z, Fathima A, Ghosh S, Saghayezhian M, Taylor J, Jin R, Zhu Y, Pantelides S T, Zhang J, Plummer E W, Guo H 2019 Nat. Commun. 10 5248Google Scholar

    [56]

    Roh C J, Jung M C, Kim J R, Go K J, Kim J, Oh H J, Jo Y R, Shin Y J, Choi J G, Kim B J, Noh D Y, Choi S Y, Noh T W, Han M J, Lee J S 2020 Small 16 2003055Google Scholar

    [57]

    Kim J R, Jang J, Go K J, Park S Y, Roh C J, Bonini J, Kim J, Lee H G, Rabe K M, Lee J S, Choi S Y, Noh T W, Lee D 2020 Nat. Commun. 11 4944Google Scholar

    [58]

    Glazer A M 1972 Acta. Crystallogr. B 28 3384Google Scholar

    [59]

    Benedek N A, Mulder A T, Fennie C J 2012 J. Solid State Chem. 195 11Google Scholar

    [60]

    Zhang Q, Gao A, Meng F, Jin Q, Lin S, Wang X, Xiao D, Wang C, Jin K, Su D, Guo E, Gu L 2021 Nat. Commun. 12 1853Google Scholar

    [61]

    Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H 2021 J. Am. Chem. Soc. 143 17517Google Scholar

    [62]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267Google Scholar

    [63]

    Bhattacharya K, Ravichandran G 2003 Acta Mater. 51 5941Google Scholar

    [64]

    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X 2015 Prog. Mater. Sci. 68 1Google Scholar

    [65]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [66]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (New York: Springer) p36

    [67]

    Li L, Xie L, Pan X 2019 Rep. Prog. Phys. 82 126502Google Scholar

    [68]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lu X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [69]

    Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park S E, Cross L E, Shrout T R 1999 Jpn. J. Appl. Phys. 38 5505Google Scholar

    [70]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [71]

    Wada S, Tsurumi T 2004 Brit. Ceram. Trans. 103 93Google Scholar

    [72]

    Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813Google Scholar

    [73]

    Pan H, Lan S, Xu S, Zhang Q, Yao H, Liu Y, Meng F, Guo E J, Gu L, Yi D, Renshaw Wang X, Huang H, MacManus-Driscoll Judith L, Chen L Q, Jin K J, Nan C W, Lin Y H 2021 Science 374 100Google Scholar

    [74]

    Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252Google Scholar

    [75]

    Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [76]

    Chen S, Yuan S, Hou Z, Tang Y, Zhang J, Wang T, Li K, Zhao W, Liu X, Chen L, Martin L W, Chen Z 2021 Adv. Mater. 33 2000857Google Scholar

    [77]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [78]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [79]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepütz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [80]

    Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [81]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [82]

    Chen P, Zhong X, Zorn J A, Li M, Sun Y, Abid A Y, Ren C, Li Y, Li X, Ma X, Wang J, Liu K, Xu Z, Tan C, Chen L, Gao P, Bai X 2020 Nat. Commun. 11 1840Google Scholar

    [83]

    Li X, Tan C, Liu C, Gao P, Sun Y, Chen P, Li M, Liao L, Zhu R, Wang J, Zhao Y, Wang L, Xu Z, Liu K, Zhong X, Wang J, Bai X 2020 Proc. Natl. Acad. Sci. U. S. A. 117 18954Google Scholar

    [84]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103Google Scholar

    [85]

    Zheng Z, Ma Q, Bi Z, de la Barrera S, Liu M-H, Mao N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, Jarillo-Herrero P 2020 Nature 588 71Google Scholar

    [86]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [87]

    Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar

    [88]

    Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan Terence M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong Dillon D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716Google Scholar

    [89]

    Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721Google Scholar

    [90]

    Ye M, Hu S, Zhu Y, Zhang Y, Ke S, Xie L, Zhang Y, Hu S, Zhang D, Luo Z, Gu M, He J, Zhang P, Zhang W, Chen L 2021 Nano Lett. 21 144Google Scholar

    [91]

    Hadjimichael M, Li Y, Zatterin E, Chahine G A, Conroy M, Moore K, Connell E N O, Ondrejkovic P, Marton P, Hlinka J, Bangert U, Leake S, Zubko P 2021 Nat. Mater. 20 495Google Scholar

    [92]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [93]

    Rossouw M H, Thackeray M M 1991 Mater. Res. Bull. 26 463Google Scholar

    [94]

    Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A 2007 J. Mater. Chem. 17 3112Google Scholar

    [95]

    Yu H, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H, Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969Google Scholar

    [96]

    Yang Y, Zhang Z, Liu S, Wang B, Liu J, Ren Y, Zhang X, Zhao S, Liu D, Yu H 2022 Matter 5 3869Google Scholar

    [97]

    Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K, Yu H 2021 Adv. Mater. 33 2001358Google Scholar

    [98]

    Zhu X, Meng F, Zhang Q, Xue L, Zhu H, Lan S, Liu Q, Zhao J, Zhuang Y, Guo Q, Liu B, Gu L, Lu X, Ren Y, Xia H 2021 Nat. Sustain. 4 392

    [99]

    Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Miller D, DeWahl A, Hackney S, Key B, Kim D, Slater M D, Johnson C S 2014 Adv. Energy Mater. 4 1400458Google Scholar

    [100]

    Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 5894Google Scholar

    [101]

    Xu G L, Amine R, Xu Y F, Liu J, Gim J, Ma T, Ren Y, Sun C J, Liu Y, Zhang X, Heald S M, Solhy A, Saadoune I, Mattis W L, Sun S G, Chen Z, Amine K 2017 Energy Environ. Sci. 10 1677Google Scholar

    [102]

    Cheng Z, Fan X Y, Yu L, Hua W, Guo Y J, Feng Y H, Ji F D, Liu M, Yin Y X, Han X, Guo Y G, Wang P F 2022 Angew. Chem. Int. Ed. 61 e202117728

    [103]

    Li R, Gao J, Li J, Huang H, Li X, Wang W, Zheng L R, Hao S M, Qiu J, Zhou W 2022 Adv. Funct. Mater. 2205661

    [104]

    Ophus C 2019 Microsc. Microanal. 25 563Google Scholar

    [105]

    Zhu Y 2021 Acc. Chem. Res. 54 3518Google Scholar

    [106]

    Bianco E, Kourkoutis L F 2021 Acc. Chem. Res. 54 3277Google Scholar

    [107]

    Ge M, Su F, Zhao Z, Su D 2020 Mater. Today Nano 11 100087Google Scholar

    [108]

    Muto S, Shiga M 2019 Microscopy 69 110

  • 图 1  氧八面体功能基元旋转与原子尺度成像[49,57] (a), (b)分别为La2/3Sr1/3MnO3/NdGaO3和La2/3Sr1/3MnO3/SrTiO3 (9 uc)/NdGaO3界面的原子分辨环形明场像[49]; (c) CaTiO3 (111)薄膜沿[1$ \stackrel{-}{1} $0]带轴的环形明场像; (d) 利用深度神经网络分析图(c)所得到的CaTiO3薄膜中氧八面体旋转模式分布图; (e) CaTiO3薄膜中每个单胞的极化矢量分布[57]

    Figure 1.  Oxygen octahedral rotation and atomic resolution imaging[49,57]: (a), (b) Atomic resolution annular bright-field scanning transmission electron microscopy (ABF-STEM) images of La2/3Sr1/3MnO3/NdGaO3 and La2/3Sr1/3MnO3/SrTiO3 (9 uc)/NdGaO3 heterostructures, respectively[49]; (c) atomic resolution ABF-STEM image of CaTiO3 (111) films along the [1$ \stackrel{-}{1} $0] zone axis; (d) oxygen octahedral rotation map obtained by deep neural network analysis of the sample regions in (c); (e) polarization vectors for each unit cell of CaTiO3 films [57].

    图 2  不同铁电极化畴组态的原子结构[7,9,77,79] (a) BiFeO3-BaTiO3-SrTiO3薄膜[010]带轴的原子分辨高角环形暗场像, 黄色虚线勾画了纳米尺度铁电畴, 区域I、II、III分别为菱方相、四方相和两相界面[9]; (b) (K, Na)NbO3 (KNN)沿[110]方向衬度反转的环形明场像, O、R、T分别代表正交晶系、菱方晶系和四方晶系, 虚线区域标示了从R相到O相再到T相的极化旋转[7]; (c) PbTiO3/SrTiO3铁电多层薄膜中通量全闭合畴原子结构, 绿色和蓝色虚线表示90°畴壁, 红色虚线表示180°畴壁[77]; (d) PbTiO3/SrTiO3超晶格中长程有序排列的涡旋畴[79]. 图中所有箭头表示极化位移矢量

    Figure 2.  Atomic structure of different domain configurations[7,9,77,79]: (a) Atomic resolution high angle annular dark field (HAADF)-STEM image of BiFeO3-BaTiO3-SrTiO3 film along the [010] direction, wherein the yellow dashed lines delineate the nanodomains, Region I, II, III are rhombohedral, tetragonal domain and interface between them, respectively[9]; (b) contrast-reversed ABF-STEM image of (K, Na)NbO3 (KNN) along [110] zone axis, O, R, and T indicate orthorhombic, rhombohedral and tetragonal phase, respectively. dashed lines regions highlighted by dash line show polarization rotation from R to O to T[7]; (c) atomic structure of flux-closure domain in the PbTiO3/SrTiO3 superlattice, the green and blue dashed lines indicate the 90° domain walls, the red dashed lines indicate the 180° domain walls[77]; (d) long-range ordered vortex-antivortex arrays in the PbTiO3/SrTiO3 superlattice[79]. All of arrows indicate the polar displacement vector.

    图 3  典型晶相功能基元构筑的功能氧化物材料原子结构[15, 90, 95] (a) LuFe2O4(左上)和LuFeO3(右上)的晶体结构、原子分辨高角环形暗场像以及由两者构筑的(LuFeO3)m/(LuFe2O4)1 (6 ≤ m ≤ 10)超晶格[15]; (b) (SrRuO3)1/(BaTiO3)10超晶格原子结构以及极化矢量分布(左图), 其中箭头表示钙钛矿B位原子相对于氧八面体中心的位移, 右图为垂直于超晶格界面方向钙钛矿A位和B位原子的衬度曲线[90]; (c) Li1.2Mn0.567Ni0.166Co0.067O2正极材料同一区域沿[$1\bar10 $]rh带轴的高角环形暗场像(左图)和环形明场像(右图), 其中P, R分别表示单斜的类Li2MnO3结构平行四边形和矩形对称性, 右图中的结构模型表示交互生长的两相和异质界面的原子排列[95]

    Figure 3.  Atomic structure of functional oxide materials constructed by typical crystal phases[15, 90, 95]: (a) Crystal structure and atomic resolution HAADF-STEM images of LuFe2O4 (top left) and LuFeO3 (top right), (LuFeO3)m/(LuFe2O4)1 superlattice series for 6 ≤ m ≤ 10[15]; (b) superlattice atomic structure of (SrRuO3)1/(BaTiO3)10 with an overlay of the polar vectors (left), yellow arrows represent the displacement of the B-site from the mass center of oxygen octahedron in perovskite, and STEM intensity profiles of A-site and B-site atoms in perovskite across superlattice interface of BaTiO3/SrRuO3 (right)[90]. (c) HAADF (left) and ABF-STEM (right) images of the intergrowth two-phase and hetero-interface in the same region along the [$1 \bar1 0 $]rh zone axis, wherein P and R indicate parallelogram and rectangular symmetry of the monoclinic Li2MnO3-like structure and inserted image in the right image shows the intergrowth two-phase and hetero-interface atomic arrangements[95].

    表 1  皮米尺度像差校正透射电子显微学成像技术比较

    Table 1.  Comparison of aberration-corrected transmission electron microscopy imaging techniques at the picoscale.

    成像技术空间分辨率/pm测量精度/pm样品厚度/nm所需条件特点
    出射波重构80[30]3 <σ<10[31]< 10重构软件同时获取振幅和相位信息
    负球差成像57[32]σ <1[33]< 5负球差系数对轻元素敏感
    高角环形暗场成像40.5[34]σ<1[27]< 50环形探测器对重元素敏感
    环形明场成像44.4[35]1.5 <σ <3.8[36]< 50环形探测器对轻元素敏感
    积分差分相位衬度成像63[37]0.97 <σ <2.3[33]< 50四象限探测器对轻元素敏感、低剂量
    电子叠层衍射成像23[38]σ < 1[38, 39]< 50高速探测器、特定算法深亚埃分辨、低剂量
    DownLoad: CSV
  • [1]

    Ritchie R O 2011 Nat. Mater. 10 817Google Scholar

    [2]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [3]

    Chen K, Li L 2019 Adv. Mater. 31 1901115

    [4]

    Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [5]

    Chen J, Chen H, Xu F, Cao L, Jiang X, Yang S, Sun Y, Zhao X, Lin C, Ye N 2021 J. Am. Chem. Soc. 143 10309Google Scholar

    [6]

    Liu B, Jiang X, Li B, Zeng H, Guo G 2020 Angew. Chem. Int. Ed. 59 4856Google Scholar

    [7]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [8]

    Takenaka H, Grinberg I, Liu S, Rappe A M 2017 Nature 546 391Google Scholar

    [9]

    Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [10]

    Li H, Li X, Guo D, Lou L, Li W, Zhang X 2016 Nano Lett. 16 5631Google Scholar

    [11]

    Li X, Lou L, Li Y, Zhang G, Hua Y, Li W, Zhang H T, Yue M, Zhang X 2022 Nano Lett. 22 7644Google Scholar

    [12]

    Zhang H T, Zhang X 2022 Mater. Res. Lett. 10 1Google Scholar

    [13]

    Li Z, Li Y, Zhang M, Yin Z W, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G, Pan F 2021 Adv. Energy Mater. 11 2101962Google Scholar

    [14]

    Liu J, Qi R, Zuo C, Lin C, Zhao W, Yang N, Li J, Lu J, Chen X, Qiu J, Chu M, Zhang M, Dong C, Xiao Y, Chen H, Pan F 2021 Nano Energy 88 106252Google Scholar

    [15]

    Mundy J A, Brooks C M, Holtz M E, Moyer J A, Das H, Rébola A F, Heron J T, Clarkson J D, Disseler S M, Liu Z, Farhan A, Held R, Hovden R, Padgett E, Mao Q, Paik H, Misra R, Kourkoutis L F, Arenholz E, Scholl A, Borchers J A, Ratcliff W D, Ramesh R, Fennie C J, Schiffer P, Muller D A, Schlom D G 2016 Nature 537 523Google Scholar

    [16]

    Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J, Xie Y 2021 Phys. Rev. Lett. 126 026802Google Scholar

    [17]

    Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [18]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [19]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [20]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [21]

    Ismail-Beigi S, Walker F J, Disa A S, Rabe K M, Ahn C H 2017 Nat. Rev. Mater. 2 17060Google Scholar

    [22]

    Xiao D, Gu L 2020 Nano Select 1 183Google Scholar

    [23]

    Ruska E 1987 Rev. Mod. Phys. 59 627Google Scholar

    [24]

    Pennycook S J 2017 Ultramicroscopy 180 22Google Scholar

    [25]

    Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Ikuhara Y 2010 Ultramicroscopy 110 903Google Scholar

    [26]

    Lazić I, Bosch E G T, Lazar S 2016 Ultramicroscopy 160 265Google Scholar

    [27]

    Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, Voyles P M 2014 Nat. Commun. 5 4155Google Scholar

    [28]

    Suenaga K, Sato Y, Liu Z, Kataura H, Okazaki T, Kimoto K, Sawada H, Sasaki T, Omoto K, Tomita T, Kaneyama T, Kondo Y 2009 Nat. Chem. 1 415Google Scholar

    [29]

    Suenaga K, Okazaki T, Okunishi E, Matsumura S 2012 Nature Photon. 6 545Google Scholar

    [30]

    Kisielowski C, Hetherington C J D, Wang Y C, Kilaas R, O’Keefe M A, Thust A 2001 Ultramicroscopy 89 243Google Scholar

    [31]

    Bals S, Aert S V, Tendeloo G V, Ávila-Brande D 2006 Phys. Rev. Lett. 96 096106Google Scholar

    [32]

    Jin L, Barthel J, Jia C L, Urban K W 2017 Ultramicroscopy 176 99Google Scholar

    [33]

    Gauquelin N, van den Bos K H W, Béché A, Krause F F, Lobato I, Lazar S, Rosenauer A, Van Aert S, Verbeeck J 2017 Ultramicroscopy 181 178Google Scholar

    [34]

    Morishita S, Ishikawa R, Kohno Y, Sawada H, Shibata N, Ikuhara Y 2017 Microscopy 67 46

    [35]

    Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E 2011 Nat. Mater. 10 278Google Scholar

    [36]

    Gao P, Kumamoto A, Ishikawa R, Lugg N, Shibata N, Ikuhara Y 2018 Ultramicroscopy 184 177Google Scholar

    [37]

    Yücelen E, Lazić I, Bosch E G T 2018 Sci. Rep. 8 2676Google Scholar

    [38]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [39]

    Sha H, Cui J, Yu R 2022 Sci. Adv. 8 eabn2275Google Scholar

    [40]

    Rondinelli J M, May S J, Freeland J W 2012 MRS Bulletin 37 261Google Scholar

    [41]

    Yan Q, Yu J, Suram S K, Zhou L, Shinde A, Newhouse P F, Chen W, Li G, Persson K A, Gregoire J M, Neaton J B 2017 Proc. Natl. Acad. Sci. U. S. A. 114 3040Google Scholar

    [42]

    Banjade H R, Hauri S, Zhang S, Ricci F, Gong W, Hautier G, Vucetic S, Yan Q Sci. Adv. 7 eabf1754

    [43]

    Rao C N R, Cheetham A K 1996 Science 272 369Google Scholar

    [44]

    Bednorz J G, Müller K A 1988 Rev. Mod. Phys. 60 585Google Scholar

    [45]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [46]

    Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105Google Scholar

    [47]

    Gao Y, Wang J, Wu L, Bao S, Shen Y, Lin Y, Nan C 2015 Sci. China Mater. 58 302Google Scholar

    [48]

    Moon E J, Colby R, Wang Q, Karapetrova E, Schlepütz C M, Fitzsimmons M R, May S J 2014 Nat. Commun. 5 5710Google Scholar

    [49]

    Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, van Tendeloo G, Held K, Sawatzky G A, Koster G, Rijnders G 2016 Nat. Mater. 15 425Google Scholar

    [50]

    Liao Z, Gauquelin N, Green R J, Müller-Caspary K, Lobato I, Li L, Van Aert S, Verbeeck J, Huijben M, Grisolia M N, Rouco V, El Hage R, Villegas J E, Mercy A, Bibes M, Ghosez P, Sawatzky G A, Rijnders G, Koster G 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9515Google Scholar

    [51]

    Lin S, Zhang Q, Sang X, Zhao J, Cheng S, Huon A, Jin Q, Chen S, Chen S, Cui W, Guo H, He M, Ge C, Wang C, Wang J, Fitzsimmons M R, Gu L, Zhu T, Jin K, Guo E 2021 Nano Lett. 21 3146Google Scholar

    [52]

    Li S, Zhang Q, Lin S, Sang X, Need R F, Roldan M A, Cui W, Hu Z, Jin Q, Chen S, Zhao J, Wang J, Wang J, He M, Ge C, Wang C, Lu H, Wu Z, Guo H, Tong X, Zhu T, Kirby B, Gu L, Jin K, Guo E 2021 Adv. Mater. 33 2001324Google Scholar

    [53]

    Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M, Eom C B 2016 Nature 533 68Google Scholar

    [54]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [55]

    Meng M, Wang Z, Fathima A, Ghosh S, Saghayezhian M, Taylor J, Jin R, Zhu Y, Pantelides S T, Zhang J, Plummer E W, Guo H 2019 Nat. Commun. 10 5248Google Scholar

    [56]

    Roh C J, Jung M C, Kim J R, Go K J, Kim J, Oh H J, Jo Y R, Shin Y J, Choi J G, Kim B J, Noh D Y, Choi S Y, Noh T W, Han M J, Lee J S 2020 Small 16 2003055Google Scholar

    [57]

    Kim J R, Jang J, Go K J, Park S Y, Roh C J, Bonini J, Kim J, Lee H G, Rabe K M, Lee J S, Choi S Y, Noh T W, Lee D 2020 Nat. Commun. 11 4944Google Scholar

    [58]

    Glazer A M 1972 Acta. Crystallogr. B 28 3384Google Scholar

    [59]

    Benedek N A, Mulder A T, Fennie C J 2012 J. Solid State Chem. 195 11Google Scholar

    [60]

    Zhang Q, Gao A, Meng F, Jin Q, Lin S, Wang X, Xiao D, Wang C, Jin K, Su D, Guo E, Gu L 2021 Nat. Commun. 12 1853Google Scholar

    [61]

    Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H 2021 J. Am. Chem. Soc. 143 17517Google Scholar

    [62]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267Google Scholar

    [63]

    Bhattacharya K, Ravichandran G 2003 Acta Mater. 51 5941Google Scholar

    [64]

    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X 2015 Prog. Mater. Sci. 68 1Google Scholar

    [65]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [66]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (New York: Springer) p36

    [67]

    Li L, Xie L, Pan X 2019 Rep. Prog. Phys. 82 126502Google Scholar

    [68]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lu X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [69]

    Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park S E, Cross L E, Shrout T R 1999 Jpn. J. Appl. Phys. 38 5505Google Scholar

    [70]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [71]

    Wada S, Tsurumi T 2004 Brit. Ceram. Trans. 103 93Google Scholar

    [72]

    Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813Google Scholar

    [73]

    Pan H, Lan S, Xu S, Zhang Q, Yao H, Liu Y, Meng F, Guo E J, Gu L, Yi D, Renshaw Wang X, Huang H, MacManus-Driscoll Judith L, Chen L Q, Jin K J, Nan C W, Lin Y H 2021 Science 374 100Google Scholar

    [74]

    Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252Google Scholar

    [75]

    Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [76]

    Chen S, Yuan S, Hou Z, Tang Y, Zhang J, Wang T, Li K, Zhao W, Liu X, Chen L, Martin L W, Chen Z 2021 Adv. Mater. 33 2000857Google Scholar

    [77]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [78]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [79]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepütz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [80]

    Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [81]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [82]

    Chen P, Zhong X, Zorn J A, Li M, Sun Y, Abid A Y, Ren C, Li Y, Li X, Ma X, Wang J, Liu K, Xu Z, Tan C, Chen L, Gao P, Bai X 2020 Nat. Commun. 11 1840Google Scholar

    [83]

    Li X, Tan C, Liu C, Gao P, Sun Y, Chen P, Li M, Liao L, Zhu R, Wang J, Zhao Y, Wang L, Xu Z, Liu K, Zhong X, Wang J, Bai X 2020 Proc. Natl. Acad. Sci. U. S. A. 117 18954Google Scholar

    [84]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103Google Scholar

    [85]

    Zheng Z, Ma Q, Bi Z, de la Barrera S, Liu M-H, Mao N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, Jarillo-Herrero P 2020 Nature 588 71Google Scholar

    [86]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [87]

    Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar

    [88]

    Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan Terence M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong Dillon D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716Google Scholar

    [89]

    Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721Google Scholar

    [90]

    Ye M, Hu S, Zhu Y, Zhang Y, Ke S, Xie L, Zhang Y, Hu S, Zhang D, Luo Z, Gu M, He J, Zhang P, Zhang W, Chen L 2021 Nano Lett. 21 144Google Scholar

    [91]

    Hadjimichael M, Li Y, Zatterin E, Chahine G A, Conroy M, Moore K, Connell E N O, Ondrejkovic P, Marton P, Hlinka J, Bangert U, Leake S, Zubko P 2021 Nat. Mater. 20 495Google Scholar

    [92]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [93]

    Rossouw M H, Thackeray M M 1991 Mater. Res. Bull. 26 463Google Scholar

    [94]

    Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A 2007 J. Mater. Chem. 17 3112Google Scholar

    [95]

    Yu H, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H, Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969Google Scholar

    [96]

    Yang Y, Zhang Z, Liu S, Wang B, Liu J, Ren Y, Zhang X, Zhao S, Liu D, Yu H 2022 Matter 5 3869Google Scholar

    [97]

    Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K, Yu H 2021 Adv. Mater. 33 2001358Google Scholar

    [98]

    Zhu X, Meng F, Zhang Q, Xue L, Zhu H, Lan S, Liu Q, Zhao J, Zhuang Y, Guo Q, Liu B, Gu L, Lu X, Ren Y, Xia H 2021 Nat. Sustain. 4 392

    [99]

    Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Miller D, DeWahl A, Hackney S, Key B, Kim D, Slater M D, Johnson C S 2014 Adv. Energy Mater. 4 1400458Google Scholar

    [100]

    Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 5894Google Scholar

    [101]

    Xu G L, Amine R, Xu Y F, Liu J, Gim J, Ma T, Ren Y, Sun C J, Liu Y, Zhang X, Heald S M, Solhy A, Saadoune I, Mattis W L, Sun S G, Chen Z, Amine K 2017 Energy Environ. Sci. 10 1677Google Scholar

    [102]

    Cheng Z, Fan X Y, Yu L, Hua W, Guo Y J, Feng Y H, Ji F D, Liu M, Yin Y X, Han X, Guo Y G, Wang P F 2022 Angew. Chem. Int. Ed. 61 e202117728

    [103]

    Li R, Gao J, Li J, Huang H, Li X, Wang W, Zheng L R, Hao S M, Qiu J, Zhou W 2022 Adv. Funct. Mater. 2205661

    [104]

    Ophus C 2019 Microsc. Microanal. 25 563Google Scholar

    [105]

    Zhu Y 2021 Acc. Chem. Res. 54 3518Google Scholar

    [106]

    Bianco E, Kourkoutis L F 2021 Acc. Chem. Res. 54 3277Google Scholar

    [107]

    Ge M, Su F, Zhao Z, Su D 2020 Mater. Today Nano 11 100087Google Scholar

    [108]

    Muto S, Shiga M 2019 Microscopy 69 110

  • [1] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [3] Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao. In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Acta Physica Sinica, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [4] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [5] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Coarse-grain model of silicon functionalized graphene as anode material for lithium ion batteries. Acta Physica Sinica, 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [6] Zhang Chao, Fang Liang, Sui Bing-Cai, Xu Qiang, Wang Hui. Nano-scale lithography and in-situ electrical measurements based on the micro-chips in a transmission electron microscope. Acta Physica Sinica, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [7] Liu Tie-Bing, Yao Wen-Po, Ning Xin-Bao, Ni Huang-Jing, Wang Jun. The base scale entropy analysis of fMRI. Acta Physica Sinica, 2013, 62(21): 218704. doi: 10.7498/aps.62.218704
    [8] Wang Jing, Liu Gui-Chang, Li Hong-Ling, Hou Bao-Rong. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate. Acta Physica Sinica, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [9] Hong Ke, Yuan Ling, Shen Zhong-Hua, Ni Xiao-Wu. Analysis of Lamb waves propagation in functional gradient materials using Taylor expansion method. Acta Physica Sinica, 2011, 60(10): 104303. doi: 10.7498/aps.60.104303
    [10] Xiao Bing, Feng Jing, Chen Jing-Chao, Yan Ji-Kang, Gan Guo-You. Study of rutile (110) surface STM image via ab initio simulation. Acta Physica Sinica, 2008, 57(6): 3769-3774. doi: 10.7498/aps.57.3769
    [11] . Acta Physica Sinica, 2002, 51(2): 372-376. doi: 10.7498/aps.51.372
    [12] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [13] LI YI-JIE, XIONG GUANG-CHENG, GAN ZI-ZHAO, REN CONG-XIN, ZOU SHI-CHANG. TEM STUDY OF MICROSTRUCTURAL CHANGES INDUCED BY AR ION IMPLANTATION IN YBa2Cu3O7-x SUPERCONDUCTING FILMS. Acta Physica Sinica, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [14] LI LONG, LI FANG-HUA, YANG DA-YU, TIAN LING-HUA, LIN ZHEN-JIN. ELECTRON DIFFRACTION AND HIGH RESOLUTION MICRO-SCOPY STUDY ON INCOMMENSURATE MODULATED STRUCTURE IN Ce1+εFe4B4 ALLOY. Acta Physica Sinica, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [15] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [16] GUO YONG-XIANG, HEI ZU-KUN, WU YU-KUN, GUO KE-XIN. A TEM STUDY OF THE CRYSTALLIZATION OF AMORPHOUS Ni-Zr ALLOY(I)——METASTABLE PHASES FORMED DURING CRYSTALLIZATION OF Ni67Zr33. Acta Physica Sinica, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [17] ZHANG JING, LIU AN-SHENG, WU ZI-QIN, GUO KE-XIN. A TEM STUDY OF Pd-Si THIN FILM SOLID-PHASE REACTION. Acta Physica Sinica, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [18] CHENG PENG-ZHU, MA XIAO-HUA, LUO QI-GUANG, YANG DA-YU. THE PREPARATION OF TRANSMISSION ELECTRON MICROSCOPE SPECIMEN BY ELECTROLYTIC POLISHING METHOD. Acta Physica Sinica, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [19] GUO KE-XIN, LIN BAO-JUN. A TEM STUDY OF PARTIAL DISLOCATIONS IN A NICKEL-CHROMIUM ALLOY. Acta Physica Sinica, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
    [20] WU ZI-QIN, GAO QIAO-JUN, LI YONG-HONG, TANG XIAN-DE. A HVEM OBSERVATION OF THE Nb/Nb3Sn COMPOSITE SUPERCONDUCTING MATERIALS. Acta Physica Sinica, 1980, 29(9): 1226-1230. doi: 10.7498/aps.29.1226
Metrics
  • Abstract views:  5384
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2023
  • Accepted Date:  07 March 2023
  • Available Online:  13 April 2023
  • Published Online:  05 June 2023

/

返回文章
返回