Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Recent progress of the glassy materials and physics

Sun Yi-Tao, Wang Chao, Lü Yu-Miao, Hu Yuan-Chao, Luo Peng, Liu Ming, Xian Hai-Jie, Zhao De-Qian, Ding Da-Wei, Sun Bao-An, Pan Ming-Xiang, Wen Ping, Bai Hai-Yang, Liu Yan-Hui, Wang Wei-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to combining the properties of both metal and glass, metallic glasses exhibit superior physical and mechanical properties along with exotic phenomena, so they have a wide application prospect in many areas. In addition, their continuously adjustable composition and simple disordered atomic structure provide ideal model material systems for the study of fundamental questions commonly existing in glassy materials. The discovery of metallic glasses that can form bulk materials has pushed the relevant research to the frontier of condensed matter physics and material science. The EX4 group of the Institute of Physics, Chinese Academy of Sciences, has devoted to the study of glassy materials and physics for many years, and made important contributions to this field. In this paper, we summarize our recent progress of metallic glasses, including the relaxation behavior and stability, surface dynamics, materials functionalities, and new method on materials discovery.
    [1]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [2]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [3]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587

    [4]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310

    [5]

    Shintani H, Tanaka H 2008 Nat. Mater. 7 870

    [6]

    Sokolov A P, Calemczuk R, Salce B, Kisliuk A, Quitmann D, Duval E 1997 Phys. Rev. Lett. 78 2405

    [7]

    Sokolov A P, Rossler E, Kisliuk A, Quitmann D 1993 Phys. Rev. Lett. 71 2062

    [8]

    Yannopoulos S N, Papatheodorou G N 2000 Phys. Rev. B 62 3728

    [9]

    Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901

    [10]

    Luo P, Wen P, Bai H Y, Ruta B, Wang W H 2017 Phys. Rev. Lett. 118 225901

    [11]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353

    [12]

    Guo Y L, Morozov A, Schneider D, Chung J, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11 337

    [13]

    Yu H B, Luo Y S, Samwer K 2013 Adv. Mater. 25 5904

    [14]

    Singh S, Ediger M D, de Pablo J J 2013 Nat. Mater. 12 139

    [15]

    Luo P, Cao C R, Zhu F, L Y M, Liu Y H, Wen P, Bai H Y, Vaughan G, di Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 9 1389

    [16]

    Wang W H 2012 Nat. Mater. 11 275

    [17]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [18]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [19]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823

    [20]

    Zhu Z G, Wen P, Wang D P, Xue R J, Zhao D Q, Wang W H 2013 J. Appl. Phys. 114 083512

    [21]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200

    [22]

    Concustell A, Mear F O, Surinach S, Baro M D, Greer A L 2009 Phil. Mag. Lett. 89 831

    [23]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [24]

    Zeng Q S, Sheng H W, Ding Y, Wang L, Yang W G, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404

    [25]

    Jin H J, Gu X J, Wen P, Wang L B, Lu K 2003 Acta Mater. 51 6219

    [26]

    Wang C, Yang Z Z, Ma T, Sun Y T, Yin Y Y, Gong Y, Gu L, Wen P, Zhu P W, Long Y W, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 111901

    [27]

    Ge T P, Wang C, Tan J, Ma T, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 J. Appl. Phys. 121 205109

    [28]

    Schuster B E, Wei Q, Hufnagel T C, Ramesh K T 2008 Acta Mater. 56 5091

    [29]

    Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E 2007 Nat. Mater. 6 735

    [30]

    L Y M, Sun B A, Zhao L Z, Wang W H, Pan M X, Liu C T, Yang Y 2016 Sci. Rep-Uk. 6 28523

    [31]

    Stevenson J D, Wolynes P G 2008 J. Chem. Phys. 129 234514

    [32]

    Cao C R, L Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606

    [33]

    Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X, Wang W H 2017 Phys. Rev. Lett. 118 016101

    [34]

    L Y M, Zeng J F, Huang J C, Kuan S Y, Nieh T G, Wang W H, Pan M X, Liu C T, Yang Y 2017 J. Appl. Phys. 121 095304

    [35]

    L Y M 2017 Ph. D. Dissertation (Beijing:Institute of Physics, Chinese Academy of Sciences) (in Chinese)[吕玉苗 2017 博士学位论文 (北京:中国科学院物理研究所)]

    [36]

    Jang D C, Greer J R 2010 Nat. Mater. 9 215

    [37]

    Lee D W, Zhao B G, Perim E, Zhang H T, Gong P, Gao Y L, Liu Y H, Toher C, Curtarolo S, Schroers J, Vlassak J J 2016 Acta Mater. 121 68

    [38]

    Liu M, Cao C R, L Y M, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 031901

    [39]

    Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z A 2013 Adv. Mater. 25 5997

    [40]

    Xian H J, Cao C R, Shi J A, Zhu X S, Hu Y C, Huang Y F, Meng S, Gu L, Liu Y H, Bai H Y, Wang W H 2017 Appl. Phys. Lett. 111 121906

    [41]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [42]

    Turner J A 2004 Science 305 972

    [43]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [44]

    Hu Y C, Wang Y Z, Su R, Cao C R, Li F, Sun C W, Yang Y, Guan P F, Ding D W, Wang Z L, Wang W H 2016 Adv. Mater. 28 10293

    [45]

    Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D 2016 Nature 529 484

    [46]

    Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, Scheffler M 2015 Phys. Rev. Lett. 114 105503

    [47]

    Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J 2016 Nature 533 73

    [48]

    Cortes C, Vapnik V 1995 Mach. Learn. 20 273

    [49]

    Sun Y T, Bai H Y, Li M Z, Wang W H 2017 J. Phys. Chem. Lett. 8 3434

  • [1]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [2]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [3]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587

    [4]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310

    [5]

    Shintani H, Tanaka H 2008 Nat. Mater. 7 870

    [6]

    Sokolov A P, Calemczuk R, Salce B, Kisliuk A, Quitmann D, Duval E 1997 Phys. Rev. Lett. 78 2405

    [7]

    Sokolov A P, Rossler E, Kisliuk A, Quitmann D 1993 Phys. Rev. Lett. 71 2062

    [8]

    Yannopoulos S N, Papatheodorou G N 2000 Phys. Rev. B 62 3728

    [9]

    Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901

    [10]

    Luo P, Wen P, Bai H Y, Ruta B, Wang W H 2017 Phys. Rev. Lett. 118 225901

    [11]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353

    [12]

    Guo Y L, Morozov A, Schneider D, Chung J, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11 337

    [13]

    Yu H B, Luo Y S, Samwer K 2013 Adv. Mater. 25 5904

    [14]

    Singh S, Ediger M D, de Pablo J J 2013 Nat. Mater. 12 139

    [15]

    Luo P, Cao C R, Zhu F, L Y M, Liu Y H, Wen P, Bai H Y, Vaughan G, di Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 9 1389

    [16]

    Wang W H 2012 Nat. Mater. 11 275

    [17]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [18]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [19]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823

    [20]

    Zhu Z G, Wen P, Wang D P, Xue R J, Zhao D Q, Wang W H 2013 J. Appl. Phys. 114 083512

    [21]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200

    [22]

    Concustell A, Mear F O, Surinach S, Baro M D, Greer A L 2009 Phil. Mag. Lett. 89 831

    [23]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [24]

    Zeng Q S, Sheng H W, Ding Y, Wang L, Yang W G, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404

    [25]

    Jin H J, Gu X J, Wen P, Wang L B, Lu K 2003 Acta Mater. 51 6219

    [26]

    Wang C, Yang Z Z, Ma T, Sun Y T, Yin Y Y, Gong Y, Gu L, Wen P, Zhu P W, Long Y W, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 111901

    [27]

    Ge T P, Wang C, Tan J, Ma T, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 J. Appl. Phys. 121 205109

    [28]

    Schuster B E, Wei Q, Hufnagel T C, Ramesh K T 2008 Acta Mater. 56 5091

    [29]

    Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E 2007 Nat. Mater. 6 735

    [30]

    L Y M, Sun B A, Zhao L Z, Wang W H, Pan M X, Liu C T, Yang Y 2016 Sci. Rep-Uk. 6 28523

    [31]

    Stevenson J D, Wolynes P G 2008 J. Chem. Phys. 129 234514

    [32]

    Cao C R, L Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606

    [33]

    Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X, Wang W H 2017 Phys. Rev. Lett. 118 016101

    [34]

    L Y M, Zeng J F, Huang J C, Kuan S Y, Nieh T G, Wang W H, Pan M X, Liu C T, Yang Y 2017 J. Appl. Phys. 121 095304

    [35]

    L Y M 2017 Ph. D. Dissertation (Beijing:Institute of Physics, Chinese Academy of Sciences) (in Chinese)[吕玉苗 2017 博士学位论文 (北京:中国科学院物理研究所)]

    [36]

    Jang D C, Greer J R 2010 Nat. Mater. 9 215

    [37]

    Lee D W, Zhao B G, Perim E, Zhang H T, Gong P, Gao Y L, Liu Y H, Toher C, Curtarolo S, Schroers J, Vlassak J J 2016 Acta Mater. 121 68

    [38]

    Liu M, Cao C R, L Y M, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 031901

    [39]

    Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z A 2013 Adv. Mater. 25 5997

    [40]

    Xian H J, Cao C R, Shi J A, Zhu X S, Hu Y C, Huang Y F, Meng S, Gu L, Liu Y H, Bai H Y, Wang W H 2017 Appl. Phys. Lett. 111 121906

    [41]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [42]

    Turner J A 2004 Science 305 972

    [43]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [44]

    Hu Y C, Wang Y Z, Su R, Cao C R, Li F, Sun C W, Yang Y, Guan P F, Ding D W, Wang Z L, Wang W H 2016 Adv. Mater. 28 10293

    [45]

    Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D 2016 Nature 529 484

    [46]

    Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, Scheffler M 2015 Phys. Rev. Lett. 114 105503

    [47]

    Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J 2016 Nature 533 73

    [48]

    Cortes C, Vapnik V 1995 Mach. Learn. 20 273

    [49]

    Sun Y T, Bai H Y, Li M Z, Wang W H 2017 J. Phys. Chem. Lett. 8 3434

  • [1] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [3] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [4] Xu Shan-Sen, Chang Jian, Zhai Bin, Zhu Xian-Nian, Wei Bing-Bo. Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr57Cu20Al10Ni8Ti5 alloy. Acta Physica Sinica, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [5] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [6] Wu Zhen-Wei, Wang Wei-Hua. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems. Acta Physica Sinica, 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [7] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] Cao Cheng-Cheng, Fan Jue-Wen, Zhu Li, Meng Yang, Wang Yin-Gang. Effects of relaxation time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy. Acta Physica Sinica, 2017, 66(16): 167501. doi: 10.7498/aps.66.167501
    [9] Wen Ping. β-relaxation in glass forming systems. Acta Physica Sinica, 2017, 66(17): 176407. doi: 10.7498/aps.66.176407
    [10] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [11] Wei Hong-Qing, Long Zhi-Lin, Xu Fu, Zhang Ping, Tang Yi. Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation. Acta Physica Sinica, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [12] Guo Gu-Qing, Yang Liang, Zhang Guo-Qing. Atomic structure of Zr48Cu45Al7 bulk metallic glass. Acta Physica Sinica, 2011, 60(1): 016103. doi: 10.7498/aps.60.016103
    [13] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [14] Zhao Jiu-Zhou, Liu Jun, Zhao Yi, Hu Zhuang-Qi. Molecular dynamics simulation of the pressure effect on the formation of glassy Cu. Acta Physica Sinica, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [15] Xia Ming-Xu, Meng Qing-Ge, Zhang Shu-Guang, Ma Chao-Li, Li Jian-Guo. Thermodynamic characteristics of metallic glass-forming liquids. Acta Physica Sinica, 2006, 55(12): 6543-6549. doi: 10.7498/aps.55.6543
    [16] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [17] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [18] Liu Yi, Wu Zi-Fang, Liu Lin, Zhang Tao. Study on structure relaxation of Zr5555Cu3030Al10 10Ni55bulk amorphous alloy. Acta Physica Sinica, 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [19] Chen Zhi-Hao, Liu Lan-Jun, Zhang Bo, Xi Yun, Wang Qiang, Zu Fang-Qiu. Glass transition kinetic property of novel bulk Zr-Al-Ni-Cu (Nb,Ti) amorphous alloy*. Acta Physica Sinica, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [20] Liu Yi, Liu Lin, Wang Jun, Zhao Hui, Rong Li-Xia, Dong Bao-Zhong. In-situ study on structural relaxation of Zr55Cu30Al1 0Ni5bulk amorphous alloy by SAXS. Acta Physica Sinica, 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
Metrics
  • Abstract views:  10312
  • PDF Downloads:  619
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2018
  • Accepted Date:  20 April 2018
  • Published Online:  20 June 2019

/

返回文章
返回