Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys

Deng Yong-He Wen Da-Dong Peng Chao Wei Yan-Ding Zhao Rui Peng Ping

Citation:

Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys

Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To explore the origin of glassy transition and glass-forming abilities (GFAs) of transition metal-transition metal (TM-TM) alloys from the microstructural point of view, a series of molecular dynamics (MD) simulation for the rapid solidification processes of liquid Cu56Zr44alloys at various cooling rates and pressures P are performed by using a LAMPS program. On the basis of Honeycutt-Andersen (H-A) bond-type index (ijkl), we propose an extended cluster-type index (Z, n/(ijkl)) method to characterize and analyze the microstructures of the alloy melts as well as their evolution in the rapid solidification. It is found that the majority of local atomic configurations in the rapidly solidified alloy are (12 12/1551) icosahedra, as well as (12 8/1551 2/1541 2/1431) and (12 2/1441 8/1551 2/1661) defective icosahedra, but no relationship can be seen between their number N(300 m K) and the glassy transition temperature Tg of rapidly solidified Cu56Zr44alloys. By an inverse tracking of atom trajectories from low temperatures to high temperatures the configuration heredity of icosahedral clusters in liquid is discovered to be an intrinsic feature of rapidly solidified alloys; the onset of heredity merely emerges in the super-cooled liquid rather than the initial alloy melt. Among these the (12 12/1551) standard icosahedra inherited from the super-cooled liquids at Tm-Tg is demonstrated to play a key role in the formation of Cu56Zr44 glassy alloys. Not only is their number N300 KTgP inherited from Tg to 300 K closely related to the GFA of rapidly solidified Cu56Zr44alloys, but a good correspondence of the onset temperatures of heredity (Tonset) with the reduced glass transition temperature (Trg= Tg/Tm) can be also observed. As for the influence of and P on the glassy transition, a continuous tracking of descendible icosahedra reveals that the high GFA of rapidly solidified Cu56Zr44 alloys caused by big and P can be attributed to their elevated inheritable fraction (fp and ftotal) above Tg.
      Corresponding author: Peng Ping, ppeng@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071065, 51428101), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2013JJ6070, 2015JJ5033).
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137

    [3]

    Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48

    [4]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [5]

    Du X H, Huang J C 2008 Chin. Phys. B 17 0249

    [6]

    Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459

    [7]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [8]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102

    [9]

    Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123

    [10]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508

    [11]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [12]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [13]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [14]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520

    [15]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [16]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [17]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [18]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [19]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101]

    [20]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [23]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [24]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [25]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [26]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [27]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [28]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [29]

    Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 物理学报 61 246102]

    [30]

    Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910

    [31]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105

    [32]

    Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903

    [33]

    Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732

    [34]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [35]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [36]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [37]

    Okamoto H 2008 J. Phase Equilib. Diffu. 29 204

    [38]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [39]

    Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [40]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [41]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137

    [3]

    Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48

    [4]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [5]

    Du X H, Huang J C 2008 Chin. Phys. B 17 0249

    [6]

    Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459

    [7]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [8]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102

    [9]

    Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123

    [10]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508

    [11]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [12]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [13]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [14]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520

    [15]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [16]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [17]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [18]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [19]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101]

    [20]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [23]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [24]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [25]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [26]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [27]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [28]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [29]

    Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 物理学报 61 246102]

    [30]

    Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910

    [31]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105

    [32]

    Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903

    [33]

    Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732

    [34]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [35]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [36]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [37]

    Okamoto H 2008 J. Phase Equilib. Diffu. 29 204

    [38]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [39]

    Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [40]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [41]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109

  • [1] Mo Yun-Fei, Jiang Li-Gui, Lang Lin, Wen Da-Dong, Zhang Hai-Tao, Li Yuan, Tian Ze-An, Peng Ping, Liu Rang-Su. Influence of topologically close-packed clusters on the solidification pathway of metallic tantalum liquid under high pressure. Acta Physica Sinica, 2024, 73(21): 216101. doi: 10.7498/aps.73.20241089
    [2] Wei Hong-Qing, Long Zhi-Lin, Xu Fu, Zhang Ping, Tang Yi. Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation. Acta Physica Sinica, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [3] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [4] Wen Da-Dong, Peng Ping, Jiang Yuan-Qi, Tian Ze-An, Liu Rang-Su. A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy. Acta Physica Sinica, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [5] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [6] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [7] Li Zhi-Qiang, Wang Wei-Li, Zhai Wei, Wei Bing-Bo. Formation mechanism of layered microstructure and monotectic cell within rapidly solidified Fe62.1Sn27.9Si10 alloy. Acta Physica Sinica, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [8] Yan Na, Wang Wei-Li, Dai Fu-Ping, Wei Bing-Bo. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys. Acta Physica Sinica, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [9] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [10] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [11] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhao Qian, Zhang Lin. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [12] Xu Song-Ning, Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [13] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] Zhao Jiu-Zhou, Liu Jun, Zhao Yi, Hu Zhuang-Qi. Molecular dynamics simulation of the pressure effect on the formation of glassy Cu. Acta Physica Sinica, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [16] Xia Ming-Xu, Meng Qing-Ge, Zhang Shu-Guang, Ma Chao-Li, Li Jian-Guo. Thermodynamic characteristics of metallic glass-forming liquids. Acta Physica Sinica, 2006, 55(12): 6543-6549. doi: 10.7498/aps.55.6543
    [17] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] Xu Jin-Feng, Wei Bing-Bo. Liquid phase flow and microstructure formation during rapid solidification. Acta Physica Sinica, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
    [20] Chen Zhi-Hao, Liu Lan-Jun, Zhang Bo, Xi Yun, Wang Qiang, Zu Fang-Qiu. Glass transition kinetic property of novel bulk Zr-Al-Ni-Cu (Nb,Ti) amorphous alloy*. Acta Physica Sinica, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
Metrics
  • Abstract views:  7045
  • PDF Downloads:  292
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2015
  • Accepted Date:  16 November 2015
  • Published Online:  05 March 2016

/

返回文章
返回