Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of relaxation time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy

Cao Cheng-Cheng Fan Jue-Wen Zhu Li Meng Yang Wang Yin-Gang

Citation:

Effects of relaxation time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy

Cao Cheng-Cheng, Fan Jue-Wen, Zhu Li, Meng Yang, Wang Yin-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Over past decades, Fe-based amorphous and nanocrystalline alloys have aroused a popular research interest because of their ability to achieve high saturation magnetic flux density and low coercivity, but the mechanisms for modifying annealing-induced magnetic properties on an atomic scale in amorphous matrix due to structural relaxation has not been enough understood. In this work, we study the effects of pre-annealing time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy to explore the mechanisms for structural relaxation, particularly the evolution of chemical short range order. The alloy ribbons, both melt spun and annealed, are characterized by differential scanning calorimetry, X-ray diffractometry, Mössbauer spectroscopy and magnetometry. The magnetic hyperfine field distribution of Mössbauer spectrum is decomposed into four components adopting Gaussian distributions which represent FeB-, Fe3P-, Fe3B- and α-Fe-like atomic arrangements, respectively. The fluctuation of magnetic hyperfine field distribution indicates that accompanied with the aggregation of Fe atoms, the amorphous structures in some atomic regions tend to transform from Fe3B- to FeB-like chemical short-range order with the pre-annealing time increasing, but the amorphous matrix begins to crystallize when the pre-annealing time reaches 25 min. Before crystallization, the spin-exchange interaction between magnetic atoms is strengthened due to the increase of the number of Fe clusters and the structure compaction. Thus, saturation magnetic flux density increases gradually, then shows a drastic rise when there appear α-Fe grains in the amorphous matrix. Coercivity first declines to a minimum after 5 min pre-annealing and then increases drastically. This is attributed to the fact that excess free volume and residual stresses in the melt spun sample are released out during previous pre-annealing, which can weaken magnetic anisotropy significantly, while the subsequent pre-annealing destroys the homogeneity of amorphous matrix, resulting in the increase of magnetic anisotropy. In addition, the separation of Cu atoms from the first near-neighbor shell of Fe atoms and the obvious decrease in the Fe-P coordination number suggest the formation of CuP clusters, which can provide heterogeneous nucleation sites for α-Fe and contribute to the grain refinement. Therefore, through controlling the pre-annealing time, we successfully tune the content values of CuP and Fe clusters in the amorphous matrix to promote the precipitation of α-Fe and refine grains during crystallization. For Fe80.8B10P8Cu1.2 nanocrystalline alloy, an enhancement of soft magnetic properties is achieved by a pre-annealing at 660 K for 5-10 min followed by a subsequent annealing at 750 K for 5 min.
      Corresponding author: Wang Yin-Gang, yingang.wang@nuaa.edu.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 51571115), the Six Talent Peaks Project of Jiangsu Province, China (Grant No. 2015-XCL-007) and the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
    [1]

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502 (in Chinese)[张雅楠, 王有骏, 孔令体, 李金富2012物理学报61 157502]

    [2]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88

    [3]

    Miao X F, Wang Y G 2012 J. Mater. Sci. 47 1745

    [4]

    Jack R L, Dunleavy A J, Royall C 2014 Phys. Rev. Lett. 113 095703

    [5]

    Yang X H, Ma X H, Li Q, Guo S F 2013 J. Alloys Compd. 554 446

    [6]

    Xia G T, Wang Y G, Dai J, Dai Y D 2017 J. Alloys Compd. 690 281

    [7]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [8]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [9]

    Babilas R, Kadziolka-Gawel M 2015 Acta Phys. Pol. A 127 573

    [10]

    Gupta P, Gupta A, Shukla A, Ganguli T, Sinha A K, Principi G, Maddalena A 2011 J. Appl. Phys. 110 033537

    [11]

    Srinivas M, Majumdar B, Bysakh S, Raja M M, Akhtar D 2014 J. Alloys Compd. 583 427

    [12]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [13]

    Urata A, Matsumoto H, Yoshida S, Makino A 2011 J. Alloy. Compd. 509S S431

    [14]

    Chen F G, Wang Y G, Miao X F 2013 J. Alloys Compd. 549 26

    [15]

    Gonser U, Ghafari M, Wagner H G 1978 J. Magn. Magn. Mater. 8 175

    [16]

    Panissod P, Durand J, Budnick J I 1982 Nucl. Instrum. Methods 199 99

    [17]

    Vincze I, Boudreaux D S, Tegze M 1979 Phys. Rev. B 19 4896

    [18]

    Vincze I, Kemény T, Arajs S 1980 Phys. Rev. B 21 937

    [19]

    Torrens-Serra J, Bruna P, Roth S, Rodriguez-Viejo J, Clavaguera-Mora M T 2009 J. Phys. D:Appl. Phys. 42 095010

    [20]

    Cesnek M, Kubániová D, Kohout J, Křišt'an P,Štěpánková H, Závěta K, Lančok A,Štefánik M, Miglierini M 2016 Hyperfine Interact. 237 132

    [21]

    Gupta A, Kane S N, Bhagat N, Kulik T 2003 J. Magn. Magn. Mater. 254-255 492

    [22]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [23]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans. A 50 204

    [24]

    Wang Y C, Takeuchi A, Makino A, Liang Y Y, Kawazoe Y 2014 J. Appl. Phys. 115 173910

    [25]

    Makino A 2012 IEEE Trans. Magn. 48 1331

    [26]

    Ohta M, Yoshizawa Y 2008 J. Appl. Phys. 103 07E722

    [27]

    Herzer G 1990 IEEE Trans. Magn. 26 1397

  • [1]

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502 (in Chinese)[张雅楠, 王有骏, 孔令体, 李金富2012物理学报61 157502]

    [2]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88

    [3]

    Miao X F, Wang Y G 2012 J. Mater. Sci. 47 1745

    [4]

    Jack R L, Dunleavy A J, Royall C 2014 Phys. Rev. Lett. 113 095703

    [5]

    Yang X H, Ma X H, Li Q, Guo S F 2013 J. Alloys Compd. 554 446

    [6]

    Xia G T, Wang Y G, Dai J, Dai Y D 2017 J. Alloys Compd. 690 281

    [7]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [8]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [9]

    Babilas R, Kadziolka-Gawel M 2015 Acta Phys. Pol. A 127 573

    [10]

    Gupta P, Gupta A, Shukla A, Ganguli T, Sinha A K, Principi G, Maddalena A 2011 J. Appl. Phys. 110 033537

    [11]

    Srinivas M, Majumdar B, Bysakh S, Raja M M, Akhtar D 2014 J. Alloys Compd. 583 427

    [12]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [13]

    Urata A, Matsumoto H, Yoshida S, Makino A 2011 J. Alloy. Compd. 509S S431

    [14]

    Chen F G, Wang Y G, Miao X F 2013 J. Alloys Compd. 549 26

    [15]

    Gonser U, Ghafari M, Wagner H G 1978 J. Magn. Magn. Mater. 8 175

    [16]

    Panissod P, Durand J, Budnick J I 1982 Nucl. Instrum. Methods 199 99

    [17]

    Vincze I, Boudreaux D S, Tegze M 1979 Phys. Rev. B 19 4896

    [18]

    Vincze I, Kemény T, Arajs S 1980 Phys. Rev. B 21 937

    [19]

    Torrens-Serra J, Bruna P, Roth S, Rodriguez-Viejo J, Clavaguera-Mora M T 2009 J. Phys. D:Appl. Phys. 42 095010

    [20]

    Cesnek M, Kubániová D, Kohout J, Křišt'an P,Štěpánková H, Závěta K, Lančok A,Štefánik M, Miglierini M 2016 Hyperfine Interact. 237 132

    [21]

    Gupta A, Kane S N, Bhagat N, Kulik T 2003 J. Magn. Magn. Mater. 254-255 492

    [22]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [23]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans. A 50 204

    [24]

    Wang Y C, Takeuchi A, Makino A, Liang Y Y, Kawazoe Y 2014 J. Appl. Phys. 115 173910

    [25]

    Makino A 2012 IEEE Trans. Magn. 48 1331

    [26]

    Ohta M, Yoshizawa Y 2008 J. Appl. Phys. 103 07E722

    [27]

    Herzer G 1990 IEEE Trans. Magn. 26 1397

  • [1] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [2] Han Ze-Yu, Song Cheng-Ji, Zhou Jie, Zheng Fu. Effects of underlayer on structures and magnetic properties of Fe65Co35 alloy films. Acta Physica Sinica, 2022, 71(15): 157501. doi: 10.7498/aps.71.20220476
    [3] Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [4] Wen Ping. β-relaxation in glass forming systems. Acta Physica Sinica, 2017, 66(17): 176407. doi: 10.7498/aps.66.176407
    [5] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [6] Zheng Xiao-Ping, Zhang Pei-Feng, Li Fa-Shen, Hao Yuan. Magnetism, magetostriction, and M?ssbauer effect studies of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [7] Han Wei, Chang Shu-Quan, Dai Yao-Dong, Chen Da, Huang Yan-Jun. Magnetism and Mssbauer spectra of cyanide-bridged Ni-Fe nano-molecular-magnets. Acta Physica Sinica, 2008, 57(4): 2493-2499. doi: 10.7498/aps.57.2493
    [8] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [9] Huang Yan-Jun, Li Shu-Zhen, Han Zhi-Da, Lü Li-Ya, Xia Yuan-Fu. Structure, magnetism and 119Sn M?ssbauer spectral study on intermetallic compound PrMn6Sn6. Acta Physica Sinica, 2007, 56(4): 2347-2352. doi: 10.7498/aps.56.2347
    [10] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [11] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [12] Wang Li, Wang Hai-Bo, Wang Tao, Li Fa-Shen. Structure, magnetic properties and atomic immigration of CoFe2O4 nanoparticles. Acta Physica Sinica, 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
    [13] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Structure, spin reorientation and M?ssbauer spectra of Tb0.3Dy0.7(Fe0.9T0.1)1.95 alloys. Acta Physica Sinica, 2006, 55(2): 879-883. doi: 10.7498/aps.55.879
    [14] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [15] Yang Quan-Min, Wang Ling-Ling. Influence of frequency on magnetic properties of Fe73.5Cu1 Nb3Si13.5B9 and the explanation. Acta Physica Sinica, 2005, 54(9): 4256-4262. doi: 10.7498/aps.54.4256
    [16] Li Teng, Li Wei, Li Xiu-Mei. M?ssbauer spectra study on phase variation in a high-coercivity FeCrCo alloy. Acta Physica Sinica, 2005, 54(9): 4384-4388. doi: 10.7498/aps.54.4384
    [17] Liu Yi, Wu Zi-Fang, Liu Lin, Zhang Tao. Study on structure relaxation of Zr5555Cu3030Al10 10Ni55bulk amorphous alloy. Acta Physica Sinica, 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [18] Chen Sui-Yuan, Liu Chang-Sheng, Fu Gui-Qin, Ren Xiao-Yu, Cai Qing-Kui. A study of Mssbauer spectroscopy of microcrystallization of amorphous Fe7 3.5Cu1Nb3Si13.5B9 irradiated b y a CO2-Laser. Acta Physica Sinica, 2003, 52(10): 2486-2491. doi: 10.7498/aps.52.2486
    [19] Liu Yi, Liu Lin, Wang Jun, Zhao Hui, Rong Li-Xia, Dong Bao-Zhong. In-situ study on structural relaxation of Zr55Cu30Al1 0Ni5bulk amorphous alloy by SAXS. Acta Physica Sinica, 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
    [20] LIU QING-FANG, WANG JIAN-BO, PENG YONG, CAO XING-ZHONG, XUE DE-SHENG. FABRICATION AND M?SSBAUER STUDY OF ARRAYS OF Fe1-xNix NANOWIRES. Acta Physica Sinica, 2001, 50(10): 2008-2011. doi: 10.7498/aps.50.2008
Metrics
  • Abstract views:  5662
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  10 May 2017
  • Accepted Date:  07 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回