Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of underlayer on structures and magnetic properties of Fe65Co35 alloy films

Han Ze-Yu Song Cheng-Ji Zhou Jie Zheng Fu

Citation:

Effects of underlayer on structures and magnetic properties of Fe65Co35 alloy films

Han Ze-Yu, Song Cheng-Ji, Zhou Jie, Zheng Fu
PDF
HTML
Get Citation
  • Fe100-xCox (x = 30–40) alloys have the highest saturation magnetizations, 4πMs ≥ 24 kG (1 G = 10–4 T). Therefore, FeCo thin flms have been widely used in microwave magnetic devices. However, the as-deposited FeCo film has a large coercivity, which is attributed to the large saturation magnetostriction and high magneto-crystalline anisotropy. On the basis of maintaining high saturation magnetization, adding an appropriate underlayer is a simple and effective method to reduce the coercivity of the film and facilitate the magnetic field-induced in-plane uniaxial magnetic anisotropy. Since these kinds of films are used in a high-frequency environment, the eddy current loss in GHz band must be considered. For a certain film material, the thinner the film, the lower the eddy current loss is. However, at present, the thickness of ferromagnetic layer is generally tens of nanometers or even hundreds of nanometers, which will not help to suppress the eddy current loss at high frequency. In the present study, to obtain FeCo films with good soft magnetic properties and excellent high-frequency characteristics, Fe65Co35 alloy films with a thickness of 13 nm and different underlayers (Cu, Co and Ni80Fe20) are prepared by magnetron sputtering. The effects of different underlayer materials and different NiFe underlayer thickness values on the structures and magnetic properties of FeCo films are studied. The results show that the introduction of underlayers can increase the in-plane uniaxial magnetic anisotropies of films, and the soft magnetic properties of films are significantly improved. The reason why the good soft magnetic properties can be achieved is attributed to the grain refinement, the dipolar interaction between layers, and the reduction of surface roughness. For different underlayer materials with the same thickness, NiFe underlayer can obviously improve the soft magnetic properties of FeCo films: the covercivity of easy axis is 23 Oe. By changing the thickness of NiFe underlayer, the dynamic magnetic properties of films can be adjusted. The resonance frequency changes from 3.13 GHz for NiFe(1 nm)/FeCo(13 nm) film to 2.78 GHz for NiFe(9.3 nm)/ FeCo(13 nm) film. For all NiFe/FeCo bilayer films, the real part of the permeability μ′ at low frequency has a large value of 350–450, and the damping coefficient α shows a small value of 0.01–0.02. In addition, the smaller film thickness can reduce eddy current loss, which contributes to its application in high-frequency microwave magnetic devices.
      Corresponding author: Zheng Fu, zhengfu@nxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11964027).
    [1]

    Li T Y, Liu X Y, Li J W, Pan L N, He A N, Dong Y Q 2022 J. Magn. Magn. Mater. 547 168777Google Scholar

    [2]

    Cronin D, Lordan D, Wei G, McCloskey P, Mathúna C O, Masood A 2020 J. Appl. Phys. 127 243903Google Scholar

    [3]

    Tang X L, Yu Y, Su H, Zhang H W, Zhong Z Y, Jing Y L 2018 J. Mater. Sci. 53 3573Google Scholar

    [4]

    Chai G, Phuoc N N, Ong C K 2012 Sci. Rep. 2 832Google Scholar

    [5]

    Masood A, McCloskey P, Mathúna C Ó, Kulkarni S 2017 J. Phys. Conf. Ser. 903 012050Google Scholar

    [6]

    Kurlyandskaya G V, Shcherbinin S V, Volchkov S O, Bhagat S M, Calle E, Pérez R, Vazquez M 2018 J. Magn. Magn. Mater. 459 154Google Scholar

    [7]

    Zheng F, Ma Z, Gao H, Pan F C, Li S T, Cao J W, Bai J M, Wei F L 2017 J. Mater. Sci. Mater. Electron. 28 17448Google Scholar

    [8]

    Yang F J, Min J J, Hui J H, Chen H B, Degao L, Li W J, Chen X Q, Yang C P 2017 J. Mater. Sci. Mater. Electron. 28 11733Google Scholar

    [9]

    Baco S, Abbas Q A, Hayward T J, Morley N A 2021 J. Alloy. Compd. 881 160549Google Scholar

    [10]

    Cabral L, Aragon F H, Villegas-Lelovsky L, Lima M P, Macedo W A A, Da Silva J L F 2019 ACS Appl. Mater. Inter. 11 1529Google Scholar

    [11]

    Vopsaroiu M, Georgieva M, Grundy P J, Fernandez G V, Manzoor S, Thwaites M J, O’Grady K 2005 J. Appl. Phys. 97 10N303Google Scholar

    [12]

    Vas’ko V A, Rantschler J O, Kief M T 2004 IEEE Trans. Magn. 40 2335Google Scholar

    [13]

    Xi L, Du J H, Zhou J J, Ma J H, Li X Y, Wang Z, Zuo Y L, Xue D S 2012 Thin Solid Films 520 5421Google Scholar

    [14]

    王璇, 郑富, 卢佳, 白建民, 王颖, 魏福林 2011 物理学报 60 017505Google Scholar

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta. Phys. Sin. 60 017505Google Scholar

    [15]

    Wang X, Zheng F, Liu Z Y, Liu X X, Wei D, Wei F L 2009 J. Appl. Phys. 105 07B714Google Scholar

    [16]

    Wu Y P, Yang Y, Yang Z H, Ma F S, Zong B Y, Ding J 2014 J. Appl. Phys. 116 093905Google Scholar

    [17]

    Xu F, Liao Z Q, Huang Q J, Ong C K, Li S D 2011 IEEE Trans. Magn. 47 3921Google Scholar

    [18]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Wang Y E, Carman G P, Sun N X, Chang J P 2020 Appl. Phys. Lett. 116 222404Google Scholar

    [19]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Sheil R, Wang Y E, Carman G P, Sun N X, Chang J P 2020 J. Appl. Phys. 128 013903Google Scholar

    [20]

    Fu Y, Miyao T, Cao J W, Yang Z, Matsumoto M, Liu X X, Morisako A 2007 J. Magn. Magn. Mater. 308 165Google Scholar

    [21]

    Li Y B, Li Z H, Liu X, Fu Y, Wei F L, Kamzin A S, Wei D 2010 J. Appl. Phys. 107 09A325Google Scholar

    [22]

    Sun N X, Wang S X 2002 J. Appl. Phys. 92 1477Google Scholar

    [23]

    Shimatsu T, Katada H, Watanabe I, Muraoka H, Nakamura Y 2003 IEEE Trans. Magn. 39 2365Google Scholar

    [24]

    Langford J I, Wilson A J C 1978 J. Appl. Cryst. 11 102Google Scholar

    [25]

    Scherrer P 1918 Nachr. Ges. Wiss. Göttingen 26 98

    [26]

    Herzer G 1990 IEEE Trans. Magn. 26 1397Google Scholar

    [27]

    Jiang H, Chen Y J, Chen L F, Huai Y M 2002 J. Appl. Phys. 91 6821Google Scholar

    [28]

    Inturi V R, Barnard J A 1996 J. Appl. Phys. 79 5904Google Scholar

    [29]

    Liu X X, Kanda H, Morisako A 2011 J. Phys. Conf. Ser. 266 012037Google Scholar

    [30]

    Jung H S, Doyle W D, Wittig J E, Al-Sharab J F, Bentley J 2002 Appl. Phys. Lett. 81 2415Google Scholar

    [31]

    O'Grady K, Laidler H 1999 J. Magn. Magn. Mater. 200 616Google Scholar

    [32]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595Google Scholar

    [33]

    Henkel O 1964 Phys. Stat. Sol. 7 919Google Scholar

    [34]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [35]

    Ge S H, Yao D S, Yamaguchi M, Yang X L, Zuo H P, Ishii T, Zhou D, Li F 2007 J. Phys. D Appl. Phys. 40 3660Google Scholar

    [36]

    Kuanr B K, Camley R E, Celinski Z 2005 J. Magn. Magn. Mater. 286 276Google Scholar

    [37]

    Ben Youssef J, Vukadinovic N, Billet D, Labrune M 2004 Phys. Rev. B 69 174402Google Scholar

    [38]

    Wu Y P, Han G C, Kong L B 2010 J. Magn. Magn. Mater. 322 3223Google Scholar

    [39]

    Zhong X X, Soh W T, Phuoc N N, Liu Y, Ong C K 2015 J. Appl. Phys. 117 013906Google Scholar

    [40]

    Fu Y, Cheng X F, Yang Z 2006 Phys. Stat. Sol. (a) 203 963Google Scholar

    [41]

    Phuoca N N, Hungb L T, Ongb C K 2011 J. Alloy. Compd. 509 4010Google Scholar

  • 图 1  不同衬底层上沉积的FeCo薄膜的XRD图谱, 实线为拟合曲线

    Figure 1.  XRD patterns of FeCo films deposited on different underlayers. Solid lines are the fitting curves.

    图 2  在不同衬底层上沉积的FeCo薄膜归一化的易轴磁滞回线

    Figure 2.  Normalized easy axis hysteresis loops of FeCo films deposited on different underlayers.

    图 3  不同衬底层上沉积的FeCo薄膜的δM曲线

    Figure 3.  δM curves of FeCo films deposited on different underlayers.

    图 4  在(a) Si基底、(b) Cu、(c) Co、(d) NiFe衬底层上沉积的FeCo薄膜的三维AFM图

    Figure 4.  Three-dimensional AFM images of FeCo films deposite on (a) Si substrate, (b) Cu, (c) Co, and (d) NiFe underlayers.

    图 5  不同衬底层上沉积的FeCo薄膜的磁谱图

    Figure 5.  Permeability spectra of FeCo films deposited on different underlayers.

    图 6  具有不同NiFe衬底层厚度的FeCo薄膜的XRD图谱(实线为拟合曲线)

    Figure 6.  The XRD patterns of FeCo films with different NiFe underlayer thicknesses. Solid lines are the fitting curves.

    图 7  NiFe衬底层厚度为(a) 0, (b) 1, (c) 2.3, (d) 4.6, (e) 7, (f) 9.3 nm的FeCo薄膜的面内磁滞回线

    Figure 7.  In-plane hysteresis loops of FeCo films with NiFe underlayer thickness of (a) 0, (b) 1, (c) 2.3, (d) 4.6, (e) 7, and (f) 9.3 nm.

    图 8  NiFe/FeCo薄膜的面内矫顽力和饱和磁化强度与NiFe衬底层厚度的关系

    Figure 8.  Dependence of the in-plane coercivity and saturation magnetization of NiFe/FeCo films on the thickness of NiFe underlayers.

    图 9  NiFe衬底层厚度为(a) 1, (b) 2.3, (c) 4.6, (d) 9.3 nm的FeCo薄膜的磁谱图, 红线为基于LLG方程的拟合结果

    Figure 9.  Permeability spectra of FeCo films with NiFe underlayer thickness of (a) 1, (b) 2.3, (c) 4.6, and (d) 9.3 nm. The red lines are the fitting results based on the LLG equation.

    图 10  (a) NiFe/FeCo薄膜的各向异性场和共振频率与NiFe衬底层厚度的关系; (b) NiFe/FeCo薄膜的阻尼系数和频率线宽与NiFe衬底层厚度的关系

    Figure 10.  (a) Dependence of anisotropic field and resonance frequency of NiFe/FeCo films on thickness of NiFe underlayers; (b) dependence of damping coefficient and frequency linewidth of NiFe/FeCo films on thickness of NiFe underlayers.

    表 1  Si基底和不同衬底上沉积的FeCo薄膜的易轴矫顽力、剩磁比、应变、晶粒尺寸以及阻尼系数

    Table 1.  Coercivity of easy axis, remanent magnetization ratio, strain, grain size, and damping coefficient of FeCo films deposited on Si substrate and different underlayers.

    衬底层
    材料
    易轴矫顽力
    Hc/Oe
    剩磁比
    Mr/Ms
    应变
    ε/%
    晶粒尺寸
    D/nm
    阻尼
    α
    Si1120.8349.4±0.2
    Cu410.9490.597.5±0.60.045
    Co380.9510.277.5±0.20.025
    NiFe230.9910.296.9±0.20.015
    DownLoad: CSV

    表 2  不同衬底上沉积的FeCo薄膜的磁性总结

    Table 2.  Summary of magnetic properties of FeCo films deposited on different underlayers.

    材料厚度t/nmfr/GHzμiHc/Oe
    HceHch
    Cu/FeCo[21]10+100~33~15
    Cu/FeCoa7+133.134064118
    Co/FeCo[38]7.5+1003.04221.145.814.7
    Co/FeCoa7+133.052963813.3
    NiFe/FeCo[39]10+100~30~25
    NiFe/FeCoa7+132.83360238
    a 本文所研究的双层合金薄膜.
    DownLoad: CSV
  • [1]

    Li T Y, Liu X Y, Li J W, Pan L N, He A N, Dong Y Q 2022 J. Magn. Magn. Mater. 547 168777Google Scholar

    [2]

    Cronin D, Lordan D, Wei G, McCloskey P, Mathúna C O, Masood A 2020 J. Appl. Phys. 127 243903Google Scholar

    [3]

    Tang X L, Yu Y, Su H, Zhang H W, Zhong Z Y, Jing Y L 2018 J. Mater. Sci. 53 3573Google Scholar

    [4]

    Chai G, Phuoc N N, Ong C K 2012 Sci. Rep. 2 832Google Scholar

    [5]

    Masood A, McCloskey P, Mathúna C Ó, Kulkarni S 2017 J. Phys. Conf. Ser. 903 012050Google Scholar

    [6]

    Kurlyandskaya G V, Shcherbinin S V, Volchkov S O, Bhagat S M, Calle E, Pérez R, Vazquez M 2018 J. Magn. Magn. Mater. 459 154Google Scholar

    [7]

    Zheng F, Ma Z, Gao H, Pan F C, Li S T, Cao J W, Bai J M, Wei F L 2017 J. Mater. Sci. Mater. Electron. 28 17448Google Scholar

    [8]

    Yang F J, Min J J, Hui J H, Chen H B, Degao L, Li W J, Chen X Q, Yang C P 2017 J. Mater. Sci. Mater. Electron. 28 11733Google Scholar

    [9]

    Baco S, Abbas Q A, Hayward T J, Morley N A 2021 J. Alloy. Compd. 881 160549Google Scholar

    [10]

    Cabral L, Aragon F H, Villegas-Lelovsky L, Lima M P, Macedo W A A, Da Silva J L F 2019 ACS Appl. Mater. Inter. 11 1529Google Scholar

    [11]

    Vopsaroiu M, Georgieva M, Grundy P J, Fernandez G V, Manzoor S, Thwaites M J, O’Grady K 2005 J. Appl. Phys. 97 10N303Google Scholar

    [12]

    Vas’ko V A, Rantschler J O, Kief M T 2004 IEEE Trans. Magn. 40 2335Google Scholar

    [13]

    Xi L, Du J H, Zhou J J, Ma J H, Li X Y, Wang Z, Zuo Y L, Xue D S 2012 Thin Solid Films 520 5421Google Scholar

    [14]

    王璇, 郑富, 卢佳, 白建民, 王颖, 魏福林 2011 物理学报 60 017505Google Scholar

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta. Phys. Sin. 60 017505Google Scholar

    [15]

    Wang X, Zheng F, Liu Z Y, Liu X X, Wei D, Wei F L 2009 J. Appl. Phys. 105 07B714Google Scholar

    [16]

    Wu Y P, Yang Y, Yang Z H, Ma F S, Zong B Y, Ding J 2014 J. Appl. Phys. 116 093905Google Scholar

    [17]

    Xu F, Liao Z Q, Huang Q J, Ong C K, Li S D 2011 IEEE Trans. Magn. 47 3921Google Scholar

    [18]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Wang Y E, Carman G P, Sun N X, Chang J P 2020 Appl. Phys. Lett. 116 222404Google Scholar

    [19]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Sheil R, Wang Y E, Carman G P, Sun N X, Chang J P 2020 J. Appl. Phys. 128 013903Google Scholar

    [20]

    Fu Y, Miyao T, Cao J W, Yang Z, Matsumoto M, Liu X X, Morisako A 2007 J. Magn. Magn. Mater. 308 165Google Scholar

    [21]

    Li Y B, Li Z H, Liu X, Fu Y, Wei F L, Kamzin A S, Wei D 2010 J. Appl. Phys. 107 09A325Google Scholar

    [22]

    Sun N X, Wang S X 2002 J. Appl. Phys. 92 1477Google Scholar

    [23]

    Shimatsu T, Katada H, Watanabe I, Muraoka H, Nakamura Y 2003 IEEE Trans. Magn. 39 2365Google Scholar

    [24]

    Langford J I, Wilson A J C 1978 J. Appl. Cryst. 11 102Google Scholar

    [25]

    Scherrer P 1918 Nachr. Ges. Wiss. Göttingen 26 98

    [26]

    Herzer G 1990 IEEE Trans. Magn. 26 1397Google Scholar

    [27]

    Jiang H, Chen Y J, Chen L F, Huai Y M 2002 J. Appl. Phys. 91 6821Google Scholar

    [28]

    Inturi V R, Barnard J A 1996 J. Appl. Phys. 79 5904Google Scholar

    [29]

    Liu X X, Kanda H, Morisako A 2011 J. Phys. Conf. Ser. 266 012037Google Scholar

    [30]

    Jung H S, Doyle W D, Wittig J E, Al-Sharab J F, Bentley J 2002 Appl. Phys. Lett. 81 2415Google Scholar

    [31]

    O'Grady K, Laidler H 1999 J. Magn. Magn. Mater. 200 616Google Scholar

    [32]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595Google Scholar

    [33]

    Henkel O 1964 Phys. Stat. Sol. 7 919Google Scholar

    [34]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [35]

    Ge S H, Yao D S, Yamaguchi M, Yang X L, Zuo H P, Ishii T, Zhou D, Li F 2007 J. Phys. D Appl. Phys. 40 3660Google Scholar

    [36]

    Kuanr B K, Camley R E, Celinski Z 2005 J. Magn. Magn. Mater. 286 276Google Scholar

    [37]

    Ben Youssef J, Vukadinovic N, Billet D, Labrune M 2004 Phys. Rev. B 69 174402Google Scholar

    [38]

    Wu Y P, Han G C, Kong L B 2010 J. Magn. Magn. Mater. 322 3223Google Scholar

    [39]

    Zhong X X, Soh W T, Phuoc N N, Liu Y, Ong C K 2015 J. Appl. Phys. 117 013906Google Scholar

    [40]

    Fu Y, Cheng X F, Yang Z 2006 Phys. Stat. Sol. (a) 203 963Google Scholar

    [41]

    Phuoca N N, Hungb L T, Ongb C K 2011 J. Alloy. Compd. 509 4010Google Scholar

  • [1] Wang Wen-Biao, Wu Peng, Qiao Liang, Wu Wei, Tu Cheng-Fa, Yang Sheng-Yu, Li Fa-Shen. Magnetic and loss characteristics of γ'-Fe4N soft magnetic composites. Acta Physica Sinica, 2023, 72(13): 137501. doi: 10.7498/aps.72.20222352
    [2] Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [3] Cao Cheng-Cheng, Fan Jue-Wen, Zhu Li, Meng Yang, Wang Yin-Gang. Effects of relaxation time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy. Acta Physica Sinica, 2017, 66(16): 167501. doi: 10.7498/aps.66.167501
    [4] Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun, Li Xian-Xia. Theory and simulations of high frequency characteristics for a staggered double-grating slow-wave structure with step-shaped grooves. Acta Physica Sinica, 2014, 63(1): 014101. doi: 10.7498/aps.63.014101
    [5] Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun. Analysis of high frequency characteristics of the sine waveguide. Acta Physica Sinica, 2014, 63(4): 044101. doi: 10.7498/aps.63.044101
    [6] Bai Xian-Chen, Zhang Jian-De, Yang Jian-Hua. Influence of the washer-rod structure on high frequency characteristics of wide-gap klystron cavity. Acta Physica Sinica, 2013, 62(2): 024102. doi: 10.7498/aps.62.024102
    [7] Wu Zheng, Wang Chen, Yan Guang-Ming, Liu Guan-Zhou, Li Cheng, Huang Wei, Lai Hong-Kai, Chen Song-Yan. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact. Acta Physica Sinica, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [8] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [9] Wang Xuan, Zheng Fu, Lu Jia, Bai Jian-Min, Wang Ying, Wei Fu-Lin. The effect of AlO and C elements addition on magnetic properties and frequency response of FeCo alloy film. Acta Physica Sinica, 2011, 60(1): 017505. doi: 10.7498/aps.60.017505
    [10] He Jun, Wei Yan-Yu, Gong Yu-Bin, Duan Zhao-Yun, Wang Wen-Xiang. A Ka-band folded double-ridged waveguide traveling-wave tube. Acta Physica Sinica, 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [11] Wang Dong, Chen Dai-Bing, Qin Fen, Fan Zhi-Kai. The two-dimensional periodic structure in a bifrequency magnetically insulated transmission line oscillator. Acta Physica Sinica, 2009, 58(10): 6962-6972. doi: 10.7498/aps.58.6962
    [12] Li Yan-Bo, Liu Xi, Li Zheng-Hua, Fu Yu, Kamzin A. S., Wei Fu-Lin, Yang Zheng. Effect of interface on microstructure and soft magnetic properties of Fe65Co35 thin films. Acta Physica Sinica, 2009, 58(11): 7972-7976. doi: 10.7498/aps.58.7972
    [13] Wang Dong, Chen Dai-Bing, Fan Zhi-Kai, Deng Jing-Kang. High frequency characteristics of a magnetically insulated transmission line oscillator oscillating in HEM11 mode. Acta Physica Sinica, 2008, 57(8): 4875-4882. doi: 10.7498/aps.57.4875
    [14] Feng Chun, Li Bao-He, Han Gang, Teng Jiao, Jiang Yong, Liu Quan-Lin, Yu Guang-Hua. The effect of a Bi underlayer on FePt thin film. Acta Physica Sinica, 2006, 55(12): 6656-6660. doi: 10.7498/aps.55.6656
    [15] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [16] Yang Quan-Min, Wang Ling-Ling. Influence of frequency on magnetic properties of Fe73.5Cu1 Nb3Si13.5B9 and the explanation. Acta Physica Sinica, 2005, 54(9): 4256-4262. doi: 10.7498/aps.54.4256
    [17] Deng Lian-Wen, Jiang Jian-Jun, Feng Ze-Kun, Zhang Xiu-Cheng, He Hua-Hui. Microwave electromagnetic characteristics of FeCoBSiO2 nano-granular magnetic films. Acta Physica Sinica, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [18] . Acta Physica Sinica, 2000, 49(2): 288-292. doi: 10.7498/aps.49.288
    [19] Zhou Jian, Xun Kun, Shen De-Fang, Xia Guo-Qiang, Zheng Yu-Xiang, Chen Liang-Yao. The Study of the Structural, Magnetic and Magneto-Optical Properties of (Pt3Co)1-xNix Alloy Films. Acta Physica Sinica, 1999, 48(13): 217-223. doi: 10.7498/aps.48.217
    [20] Liu Xiang-Hua, Yan Ge, Cui Li-Ya, Zhou Shao-Xiong, Wang Chong-Yu, Zheng Wu, Wang Ai-Ling, Chen Jin-Chang. Magnetic Properties of Nanostructured SmCo/FeCo Multilayers. Acta Physica Sinica, 1999, 48(13): 180-186. doi: 10.7498/aps.48.180.2
Metrics
  • Abstract views:  4802
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2022
  • Accepted Date:  08 April 2022
  • Available Online:  22 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回