Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of FeNiMo/SiO2 composite core and regulation of soft magnetic properties

Xiong Zheng-Wei Yang Jiang Wang Yu Yang Lu Guan Xian Cao Lin-Hong Wang Jin Gao Zhi-Peng

Citation:

Preparation of FeNiMo/SiO2 composite core and regulation of soft magnetic properties

Xiong Zheng-Wei, Yang Jiang, Wang Yu, Yang Lu, Guan Xian, Cao Lin-Hong, Wang Jin, Gao Zhi-Peng
PDF
HTML
Get Citation
  • Nowadays, metal soft magnetic materials are mainly used in electronic components such as high-frequency inductors. Since all the elements in the soft magnetic alloys are transition metals, dense oxide layer is easily formed on their surfaces, which can affect the regulation of soft magnetic properties. In order to solve the problems, in this work, an innovative high-temperature pretreatment process in H2/Ar mixture is adopted to pretreat FeNiMo raw powders. We confirm that the high temperature treatment in reducing atmosphere can effectively remove metal oxides from the FeNiMo material surface and increase the content of elemental states, thereby further significantly improving the effective permeability of FeNiMo raw powders. The pretreated FeNiMo powder is evenly coated with SiO2 layers, forming the FeNiMo/SiO2 soft magnetic composites. Compared with the untreated FeNiMo powder coated with SiO2, the FeNiMo/SiO2 pretreated with H2/Ar mixture gas at high temperatures has high effective permeability and low loss. Our FeNiMo/SiO2 cores prepared by the synergistic effect of high-temperature pretreatment process in H2/Ar mixture and insulation coating process have more excellent soft magnetic properties than other iron-based soft magnetic composites. Therefore, the insulation coating after being pretreated at high temperature in reducing atmosphere can greatly improve the permeability and reduce the core loss of soft magnetic composites. This will provide a new strategy for enhancing the soft magnetic properties of the composite cores.
      Corresponding author: Xiong Zheng-Wei, zw-xiong@swust.edu.cn ; Wang Yu, wangyu_dzkjdx@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904299, U1930124).
    [1]

    Xie D Z, Lin K H, Lin S T 2014 J. Magn. Magn. Mater. 353 34Google Scholar

    [2]

    Ustinovshikov Y, Shabanova I 2013 J. Alloys Compd. 578 292Google Scholar

    [3]

    Füzer J, Kollár P, Olekšáková D, Roth S 2009 J. Alloys Compd. 483 557Google Scholar

    [4]

    丁燕红, 李明吉, 杨保和, 马叙 2011 物理学报 60 097502Google Scholar

    Ding Y H, Li M J, Yang B H, Ma X 2011 Acta Phys. Sin. 60 097502Google Scholar

    [5]

    Streckova M, Bures R, Faberova M, Medvecky L, Fuzer J, Kollar P 2015 Chin. J. Chem. Eng. 23 736Google Scholar

    [6]

    Yi Y, Peng Y D, Xia C, Wu L Y, Ke X, Nie J W 2019 J. Magn. Magn. Mater. 476 100Google Scholar

    [7]

    Sunday K J, Darling K A, Hanejko F G, Anasori B, Liu Y C, Taheri M L 2015 J. Alloys Compd. 653 61Google Scholar

    [8]

    Peng Y D, Nie J W, Zhang W J, Ma J, Bao C X, Cao Y 2016 J. Magn. Magn. Mater. 399 88Google Scholar

    [9]

    Zhong X X, Chen J C, Wang L, Li B J, Li L Z 2018 J. Alloys Compd. 735 1603Google Scholar

    [10]

    Fan X A, Wang J, Wu Z Y, Li G Q 2015 Mater. Sci. Eng., B 201 79Google Scholar

    [11]

    Yao Z X, Peng Y D, Xia C, Yi X W, Mao S H, Zhang M T 2020 J. Alloys Compd. 827 154345Google Scholar

    [12]

    Neamtu B V, Geoffroy O, Chicinaş I, Isnard O 2012 Mater. Sci. Eng., B 177 661Google Scholar

    [13]

    Peng Y D, Yi Y, Li L Y, Ai H Y, Wang X X, Chen L L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [14]

    张凯, 王征, 张义, 魏荣飞, 兰中文, 余忠, 傅膑 2018 磁性材料及器件 49 52Google Scholar

    Zhang K, Wang Z, Zhang Y, Wei R F, Lan Z W, Yu Z 2018 J. Magn. Mater. Devices 49 52Google Scholar

    [15]

    Lei J, Zheng J W, Zheng H D, Qiao L, Ying Y, Cai W, Li W C, Yu J, Lin M, Che S L 2019 J. Magn. Magn. Mater. 472 7Google Scholar

    [16]

    Zhang Z Q, Cong L C, Yu Z C, Qu L N, Qian M M, Huang W M 2020 Mater. Adv. 1 54Google Scholar

    [17]

    Tu X, Gallon H J, Whitehead J C 2013 Catal. Today 211 120Google Scholar

    [18]

    冯波, 武鹏, 李永龙 2021 天然气化工 46 66

    Feng B, Wu P, Li Y L 2021 Nat. Gas Chem. Ind. 46 66

    [19]

    Cong L C, Yu Z C, Liu F B, Huang W M 2019 Catal. Sci. Technol. 9 1208Google Scholar

    [20]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [21]

    Ray S K, Dhakal D, Lee S W 2018 Chem. Eng. J. 347 836Google Scholar

    [22]

    Xiang M L, Li D B, Zou J, Li W H, Sun Y H, She X C 2010 J. Nat. Gas Chem. 19 151Google Scholar

    [23]

    Wu K Z, Zhao J J, Zhang X Y, Zhou H W, Wu M X 2019 J. Taiwan Inst. Chem. Eng. 102 212Google Scholar

    [24]

    Liu Y L, Zhang H, Ouyang P, Li Z C 2013 Electrochim. Acta 102 429Google Scholar

    [25]

    Chen X Y, Zhang Z J, Li X X, Shi C W, Li X L 2006 Chem. Phys. Lett. 418 105Google Scholar

    [26]

    严密, 彭晓领 2006 磁学基础与磁性材料(杭州: 浙江大学出版社) 第120页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) p120 (in Chinese)

    [27]

    Takahashi S, Harada S, Tamaki S 1989 J. Phys. Soc. Jpn. 58 2075Google Scholar

    [28]

    Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (2nd Ed.) (Wuhan: Wuhan University of Technology Press) p454 (in Chinese) [张联盟, 黄学辉, 宋晓岚 2008 材料科学基础(第二版) (武汉: 武汉理工大学出版社) 第454页]

    [29]

    Wang Z, Liu X S, Kan X C, Zhu R W, Yang W, Wu Q Y, Zhou S Q 2019 Curr. Appl. Phys. 19 924Google Scholar

    [30]

    Steinmetz C P 1984 Proc. IEEE 72 197Google Scholar

    [31]

    Reinert J, Brockmeyer A, De Doncker R W A A 2001 IEEE Trans. Ind. Appl. 37 1055Google Scholar

    [32]

    Zheng J W, Zheng H D, Lei J, Ying Y, Qiao L, Cai W, Li W C, Yu J, Tang Y P, Che S L 2020 J. Magn. Magn. Mater. 499 166255Google Scholar

    [33]

    Luo F, Fan X A, Luo Z G, Hu W T, Wang J, Wu Z Y, Li G Q, Li Y W, Liu X 2020 J. Magn. Magn. Mater. 498 166084Google Scholar

    [34]

    Li L Y, Chen Q L, Gao Z, Ge Y C, Yi J H 2019 J. Alloys Compd. 805 609Google Scholar

    [35]

    任劲松, 李勃, 王进, 庞新峰, 郭海 2018 电子元件与材料 37 51Google Scholar

    Ren J S, Li B, Wang J, Pang X F, Guo H 2018 Electron. Compon. Mater. 37 51Google Scholar

    [36]

    Guo R D, Wang S M, Yu Z, Sun K, Jiang X N, Wu G H, Wu C J, Lan Z W 2020 J. Alloys Compd. 830 154736Google Scholar

  • 图 1  SEM图 (a) F0; (b) F600; (c) FS0; (d) FS600

    Figure 1.  SEM images: (a) F0; (b) F600; (c) FS0; (d) FS600.

    图 2  样品FS0的(a) SEM及对应的(b)—(f) EDS元素分布图 (a) SEM; (b) Fe; (c) Ni; (d) Mo; (e) O; (f) Si

    Figure 2.  (a) SEM image and (b)–(f) corresponding EDS element distribution of sample FS0: (a) SEM; (b) Fe; (c) Ni; (d) Mo; (e) O; (f) Si.

    图 3  样品F0和F600的XPS图 (a)—(d)样品F0的XPS全谱, Fe 2p, Ni 2p和Mo 3d谱; (e)—(h)样品F600的XPS全谱, Fe 2p, Ni 2p和Mo 3d谱

    Figure 3.  XPS image of sample F0 and F600: (a)–(d) XPS survey spectrum, Fe 2p spectrum, Ni 2p spectrum and Mo 3d spectrum of sample F0; (e)–(h) XPS survey spectrum, Fe 2p spectrum, Ni 2p spectrum and Mo 3d spectrum of sample F600.

    图 4  B = 100 mT条件下, 测得的FeNiMo粉末在H2/Ar混合气体中经过不同处理温度后压制成型的软磁粉芯的磁性能 (a) 有效磁导率; (b) 损耗

    Figure 4.  Magnetic properties measured at B = 100 mT of soft magnetic powder core that is prepared by the FeNiMo powder treated at different temperatures in H2/Ar mixture: (a) Effective permeability; (b) core loss.

    图 5  B = 100 mT条件下, 测得的样品FS0和FS600在不同温度下退火后的磁性能 (a) 样品FS0的有效磁导率; (b) 样品FS0的损耗; (c) 样品FS600的有效磁导率; (d) 样品FS600的损耗. 图(c)中的插图为800 ℃烧结后复合粉芯截面的SEM图

    Figure 5.  Magnetic properties measured at B = 100 mT of samples FS0 and FS600 annealed at different temperatures: (a) Effective permeability of sample FS0; (b) core loss of sample FS0; (c) effective permeability of sample FS600; (d) core loss of sample FS600. The inset in panel (c) is the cross-section SEM image of the sample FS600 sintered at 800 ℃.

    图 6  样品F600, FS0和FS600的有效磁导率和损耗对比图

    Figure 6.  Comparison diagram of effective permeability and core loss of samples F600, FS0 and FS600.

    图 7  样品FS600在不同磁感应强度下的损耗

    Figure 7.  Core loss of sample FS600 under different magnetic fields.

    图 8  不同SMCs高频稳定性的对比

    Figure 8.  Comparison of high frequency stability of different SMCs.

    表 1  不同SMCs软磁性能的对比

    Table 1.  Comparison of the magnetic properties of different SMCs.

    SMCs50 kHz100 kHzB /
    mT
    Ref.
    μeffPs /
    (kW·m–3)
    μeffPs /
    (kW·m–3)
    FeNiMo/
    SiO2
    46.818.9746.755.5220This work
    217.3773.750
    10263905100
    FeNiMo/
    Al2O3
    87.6321.78100[11]
    FeNiMo/
    resin
    30~6180100[12]
    Fe/Al2O388.1310.6520[8]
    Fe/NiZn43.594.8343.14199.320[13]
    FeSiCr/
    SiO2
    3631150[14]
    Fe/Al2O3~35400—50020[15]
    DownLoad: CSV

    表 A1  根据测试结果拟合所得的数值

    Table A1.  Values fitted according to the test results.

    Fixed conditionConstant
    Cmαβ
    B = 20 mT0.027021.560192.44999
    B = 50 mT0.013101.962412.26657
    B = 100 mT0.024831.914922.18883
    f = 20 kHz0.030421.343802.36837
    f = 50 kHz0.101701.638302.36837
    f = 100 kHz0.030171.303232.83566
    DownLoad: CSV
  • [1]

    Xie D Z, Lin K H, Lin S T 2014 J. Magn. Magn. Mater. 353 34Google Scholar

    [2]

    Ustinovshikov Y, Shabanova I 2013 J. Alloys Compd. 578 292Google Scholar

    [3]

    Füzer J, Kollár P, Olekšáková D, Roth S 2009 J. Alloys Compd. 483 557Google Scholar

    [4]

    丁燕红, 李明吉, 杨保和, 马叙 2011 物理学报 60 097502Google Scholar

    Ding Y H, Li M J, Yang B H, Ma X 2011 Acta Phys. Sin. 60 097502Google Scholar

    [5]

    Streckova M, Bures R, Faberova M, Medvecky L, Fuzer J, Kollar P 2015 Chin. J. Chem. Eng. 23 736Google Scholar

    [6]

    Yi Y, Peng Y D, Xia C, Wu L Y, Ke X, Nie J W 2019 J. Magn. Magn. Mater. 476 100Google Scholar

    [7]

    Sunday K J, Darling K A, Hanejko F G, Anasori B, Liu Y C, Taheri M L 2015 J. Alloys Compd. 653 61Google Scholar

    [8]

    Peng Y D, Nie J W, Zhang W J, Ma J, Bao C X, Cao Y 2016 J. Magn. Magn. Mater. 399 88Google Scholar

    [9]

    Zhong X X, Chen J C, Wang L, Li B J, Li L Z 2018 J. Alloys Compd. 735 1603Google Scholar

    [10]

    Fan X A, Wang J, Wu Z Y, Li G Q 2015 Mater. Sci. Eng., B 201 79Google Scholar

    [11]

    Yao Z X, Peng Y D, Xia C, Yi X W, Mao S H, Zhang M T 2020 J. Alloys Compd. 827 154345Google Scholar

    [12]

    Neamtu B V, Geoffroy O, Chicinaş I, Isnard O 2012 Mater. Sci. Eng., B 177 661Google Scholar

    [13]

    Peng Y D, Yi Y, Li L Y, Ai H Y, Wang X X, Chen L L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [14]

    张凯, 王征, 张义, 魏荣飞, 兰中文, 余忠, 傅膑 2018 磁性材料及器件 49 52Google Scholar

    Zhang K, Wang Z, Zhang Y, Wei R F, Lan Z W, Yu Z 2018 J. Magn. Mater. Devices 49 52Google Scholar

    [15]

    Lei J, Zheng J W, Zheng H D, Qiao L, Ying Y, Cai W, Li W C, Yu J, Lin M, Che S L 2019 J. Magn. Magn. Mater. 472 7Google Scholar

    [16]

    Zhang Z Q, Cong L C, Yu Z C, Qu L N, Qian M M, Huang W M 2020 Mater. Adv. 1 54Google Scholar

    [17]

    Tu X, Gallon H J, Whitehead J C 2013 Catal. Today 211 120Google Scholar

    [18]

    冯波, 武鹏, 李永龙 2021 天然气化工 46 66

    Feng B, Wu P, Li Y L 2021 Nat. Gas Chem. Ind. 46 66

    [19]

    Cong L C, Yu Z C, Liu F B, Huang W M 2019 Catal. Sci. Technol. 9 1208Google Scholar

    [20]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [21]

    Ray S K, Dhakal D, Lee S W 2018 Chem. Eng. J. 347 836Google Scholar

    [22]

    Xiang M L, Li D B, Zou J, Li W H, Sun Y H, She X C 2010 J. Nat. Gas Chem. 19 151Google Scholar

    [23]

    Wu K Z, Zhao J J, Zhang X Y, Zhou H W, Wu M X 2019 J. Taiwan Inst. Chem. Eng. 102 212Google Scholar

    [24]

    Liu Y L, Zhang H, Ouyang P, Li Z C 2013 Electrochim. Acta 102 429Google Scholar

    [25]

    Chen X Y, Zhang Z J, Li X X, Shi C W, Li X L 2006 Chem. Phys. Lett. 418 105Google Scholar

    [26]

    严密, 彭晓领 2006 磁学基础与磁性材料(杭州: 浙江大学出版社) 第120页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) p120 (in Chinese)

    [27]

    Takahashi S, Harada S, Tamaki S 1989 J. Phys. Soc. Jpn. 58 2075Google Scholar

    [28]

    Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (2nd Ed.) (Wuhan: Wuhan University of Technology Press) p454 (in Chinese) [张联盟, 黄学辉, 宋晓岚 2008 材料科学基础(第二版) (武汉: 武汉理工大学出版社) 第454页]

    [29]

    Wang Z, Liu X S, Kan X C, Zhu R W, Yang W, Wu Q Y, Zhou S Q 2019 Curr. Appl. Phys. 19 924Google Scholar

    [30]

    Steinmetz C P 1984 Proc. IEEE 72 197Google Scholar

    [31]

    Reinert J, Brockmeyer A, De Doncker R W A A 2001 IEEE Trans. Ind. Appl. 37 1055Google Scholar

    [32]

    Zheng J W, Zheng H D, Lei J, Ying Y, Qiao L, Cai W, Li W C, Yu J, Tang Y P, Che S L 2020 J. Magn. Magn. Mater. 499 166255Google Scholar

    [33]

    Luo F, Fan X A, Luo Z G, Hu W T, Wang J, Wu Z Y, Li G Q, Li Y W, Liu X 2020 J. Magn. Magn. Mater. 498 166084Google Scholar

    [34]

    Li L Y, Chen Q L, Gao Z, Ge Y C, Yi J H 2019 J. Alloys Compd. 805 609Google Scholar

    [35]

    任劲松, 李勃, 王进, 庞新峰, 郭海 2018 电子元件与材料 37 51Google Scholar

    Ren J S, Li B, Wang J, Pang X F, Guo H 2018 Electron. Compon. Mater. 37 51Google Scholar

    [36]

    Guo R D, Wang S M, Yu Z, Sun K, Jiang X N, Wu G H, Wu C J, Lan Z W 2020 J. Alloys Compd. 830 154736Google Scholar

  • [1] Liu Wen-Shu, Gao Run-Liang, Feng Hong-Mei, Liu Yue-Yue, Huang Yi, Wang Jian-Bo, Liu Qing-Fang. Influence of magentic annealing temperature on microstructure and magnetic properties of NiCu alloy film. Acta Physica Sinica, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] Li Dan, Li Guo-Qing. Effects of oxide isolation layer on magnetic properties of L10 FePt film grown on Si substrate. Acta Physica Sinica, 2018, 67(15): 157501. doi: 10.7498/aps.67.20180387
    [3] Hu Ya-Ya, Zhu Yuan-Yuan, Zhou Bei-Bei, Liu Shuo, Liu Yong, Xiong Rui, Shi Jing. Magnetic property and electronic structure of BaFe4-xTi2+xO11. Acta Physica Sinica, 2015, 64(11): 117501. doi: 10.7498/aps.64.117501
    [4] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [5] Qin Jie-Ming, Cao Jian-Ming, Jiang Da-Yong. Growth and characterization of the Mg0.57Zn0.43O alloy film. Acta Physica Sinica, 2013, 62(13): 138101. doi: 10.7498/aps.62.138101
    [6] Zhao Xue-Tong, Li Jian-Ying, Jia Ran, Li Sheng-Tao. The Effect of DC degradation and heat-treatment on defects in ZnO varistor. Acta Physica Sinica, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [7] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] Cai Ya-Nan, Cui Can, Shen Hong-Lei, Liang Da-Yu, Li Pei-Gang, Tang Wei-Hua. Effects of thermal treatments on the formation of nanocrystalline Si embedded in Si-rich oxide films. Acta Physica Sinica, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [9] Liao Guo-Jin, Luo Hong, Yan Shao-Feng, Dai Xiao-Chun, Chen Ming. Determination of the optical constants of the magnetron sputtered aluminum oxide films from the transmission spectra. Acta Physica Sinica, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [10] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [11] Yu Huang-Zhong, Zhou Xiao-Ming, Deng Jun-Yu. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [13] Xiang Jun, Song Fu-Zhan, Shen Xiang-Qian, Chu Yan-Qiu. Preparation of one-dimensional Ni0.5Zn0.5Fe2O4/SiO2 composite nanostructures and their magnetic properties. Acta Physica Sinica, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [14] Liang Li-Ping, Hao Jian-Ying, Qin Mei, Zheng Jian-Jun. Determination of the optical constants of sol-gel derived ZrO2 films simply form the transmission spectra. Acta Physica Sinica, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [15] Li Wan-Wan, Sun Kang. Annealing of Cd0.9Zn0.1Te in cadmium vapor. Acta Physica Sinica, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [16] Yang Bai, Shen Bao-Gen, Zhao Tong-Yun, Sun Ji-Rong. Texture and magnetic properties of nanocomposite Pr2Fe14B/α-Fe melt-spun ribbons. Acta Physica Sinica, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [17] Li Jian, Song Gong-Bao, Wang Mei-Li, Zhang Bao-Shu. Study on phase relations, crystal structure and magnetic properties of Ti1-xCrxO2±δ system. Acta Physica Sinica, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [18] Zhan Xiao-Yuan, Zhang Yue, Qi Jun-Jie, Gu You-Song, Zheng Xiao-Lan. The magnetic interactions in FePt nanocomposite film. Acta Physica Sinica, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [19] Li Wan-Wan, Sun Kang. Study on the annealing of Cd1-xZnxTe in In vapor. Acta Physica Sinica, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [20] JI QI-GEN, DU YOU-WEI. THE ROLE OF GRAIN BOUNDARY IN THE Nd2Fe14B/α-Fe EXCHANGE COUPLING MAGNET. Acta Physica Sinica, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
Metrics
  • Abstract views:  5477
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2021
  • Accepted Date:  30 May 2022
  • Available Online:  22 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回