Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys

Yao Ke-Fu Shi Ling-Xiang Chen Shuang-Qin Shao Yang Chen Na Jia Ji-Li

Citation:

Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys

Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Amorphous alloy is a kind of metallic materials prepared by rapidly cooling the alloy melt through hindering crystallization in cooling process. Due to the unique structure of atomic random packing, Fe-based amorphous alloys exhibit not only structural and property isotropy, but also small structural correlation length, small magnetic anisotropic constant, and then small coercivity Hc. Like crystalline Fe-based alloys, Fe-based amorphous alloys also possess high saturation induction Bs. As a result, research on engineering applications of Fe-based amorphous alloys has been promoted by their excellent soft magnetic properties. Now Fe-based soft magnetic amorphous/nanocrystalline alloys have been produced and applied to various areas on a large scale. Here in this paper, the processes of discovery, development and application of Fe-based soft magnetic amorphous alloys are reviewed, and the effects of chemical composition, structure and preparation technology on the soft magnetic properties are introduced and discussed. The obtained theoretic results and the technological innovation show that the great contributions have been made to the development and application of Fe-based soft magnetic amorphous/crystalline alloys. Based on the progress of structure and soft magnetic property and our understanding, the development process of the fundamental research and the application progress of Fe-based soft magnetic amorphous alloys could be divided into three periods. In addition, the present challenge topics in their researches and applications are proposed.
      Corresponding author: Yao Ke-Fu, kfyao@tsinghua.edu.cn
    • Funds: Project supported by the State Key Research and Development Program of China (Grant No. 2016YB0300500) and the National Natural Science Foundation of China (Grant No. 51571127).
    [1]

    Gubanov A I 1960 Soviet Physics-Solid State 30 275

    [2]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [3]

    Duwez P, Lin S C H 1967 J. Appl. Phys. 38 4096

    [4]

    Pond R, Maddin R 1969 Trans. TMS-AIME 245 2475

    [5]

    Hasegawa R, OHandley R C 1979 J. Appl. Phys. 50 1551

    [6]

    Luborsky F E, Becker J J, McCarry R O 1975 IEEE Trans. Magn. Mag. 11 1644

    [7]

    Hasegawa R, OHandley R C, Tanner L E, Ray R, Kavesh S 1976 Appl. Phys. Lett. 29 219

    [8]

    Hasegawa R, Narasimhan M C, DeCristofaro N 1978 J. Appl. Phys. 49 1712

    [9]

    Hasegawa R, Ray R 1978 J. Appl. Phys. 49 4178

    [10]

    Luborsky F E, Walter J L 1980 US Patent. 4 217 135

    [11]

    Hatta S, Egami T, Graham C D 1979 Appl. Phys. Lett. 34 113

    [12]

    Sherwood R C, Gyorgy E M, Chen H S, Ferris S D, Norman G, Leamy H J 1975 AIP Conf. Proc. 24 745

    [13]

    OHandley R C, Mendelson L I, Nesbitt E A 1976 IEEE Trans. Magn. Mag. 12 942

    [14]

    Simpson A W, Brambley D R 1971 Phys. Status Solidi 43 291

    [15]

    Chi G C, Cargill G S 1976 Mater. Sci. Eng. 23 155

    [16]

    Hasegawa R, Chien C L 1976 Solid State Commun. 18 913

    [17]

    Fujimori H, Yoshimoto H, Masumoto T, Mitera T 1981 J. Appl. Phys. 52 189

    [18]

    Narasimhan M C 1979 US Patent 4 142 571

    [19]

    Luborsky F E, Walter J L 1980 US Patent 4 217 135

    [20]

    DeCristofaro N J, Freilich A, Nathasingh D M 1980 US Patent 4 219 355

    [21]

    Zhou S X, Lu Z C, Chen J C 2002 Physics 31 430(in Chinese) [周少雄, 卢志超, 陈金昌 2002 物理 31 430]

    [22]

    Herzer G 2005 J. Magn. Magn. Mater. 294 99

    [23]

    Herzer G 2013 Acta Mater. 61 718

    [24]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044

    [25]

    Hono K, Ping D, Ohnuma M, Onodera H 1999 Acta Mater. 47 997

    [26]

    Suzuki K, Makino A, Inoue A, Masumoto T 1991 J. Appl. Phys. 70 6232

    [27]

    Willard M A, Laughlin D E, McHenry M E, Thoma D, Sickafus K, Cross J O, Harris V 1998 J. Appl. Phys. 84 6773

    [28]

    Ogawa Y, Naoe M, Yoshizawa Y, Hasegawa R 2006 J. Magn. Magn. Mater. 304 e675

    [29]

    Makino A, Kubota T, Chang C, Makabe M, Inoue A 2007 Mater. Trans. 48 3024

    [30]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans.. 50 204

    [31]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 IEEE Trans. Magn. 45 4302

    [32]

    Matsuura M, Nishijima M, Takenaka K, Takeuchi A, Ofuchi H, Makino A 2015 J. Appl. Phys. 117 17A324

    [33]

    Gao J E, Li H X, Jiao Z B, Wu Y, Chen Y H, Yu T, L Z P 2011 Appl. Phys. Lett. 99 052504

    [34]

    Liu F J, Yao K F, Ding H Y 2011 Intermetallics 19 1674

    [35]

    Zhang J, Chang C, Wang A, Shen B 2012 J. Non-Cryst. Solids 358 1443

    [36]

    Wang A, Zhao C, Men H, He A, Chang C, Wang X 2015 J. Alloy. Compd. 630 209

    [37]

    Ohta M, Yoshizawa Y 2011 J. Phys. D: Appl. Phys. 44 064004

    [38]

    Kong F, Men H, Liu T, Shen B 2012 J. Appl. Phys. 111 07A311

    [39]

    Fan X, Men H, Ma A, Shen B 2013 J. Magn. Magn. Mater. 326 22

    [40]

    Xiang Z, Wang A, Zhao C, Men H, Wang X, Chang C 2015 J. Alloy. Compd. 622 1000

    [41]

    Sharma P, Zhang X, Zhang Y, Makino A 2015 Scripta Mater. 95 3

    [42]

    Jafari S, Beitollahi A, Yekta B E, Ohkubo T, Budinsky V, Marsilius M, Herzer G, Hono K 2016 J. Alloy. Compd. 674 136

    [43]

    Suzuki K, Parsons R, Zang B, Onodera K, Kishimoto H, Kato A 2017 Appl. Phys. Lett. 110 012407

    [44]

    Li J F, Liu X, Zhao S F, Ding H Y, Yao K F 2015 J. Magn. Magn. Mater. 386 107

    [45]

    Li J F, Shao Y, Liu X, Yao K F 2015 Sci. Bull. 60 396

  • [1]

    Gubanov A I 1960 Soviet Physics-Solid State 30 275

    [2]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [3]

    Duwez P, Lin S C H 1967 J. Appl. Phys. 38 4096

    [4]

    Pond R, Maddin R 1969 Trans. TMS-AIME 245 2475

    [5]

    Hasegawa R, OHandley R C 1979 J. Appl. Phys. 50 1551

    [6]

    Luborsky F E, Becker J J, McCarry R O 1975 IEEE Trans. Magn. Mag. 11 1644

    [7]

    Hasegawa R, OHandley R C, Tanner L E, Ray R, Kavesh S 1976 Appl. Phys. Lett. 29 219

    [8]

    Hasegawa R, Narasimhan M C, DeCristofaro N 1978 J. Appl. Phys. 49 1712

    [9]

    Hasegawa R, Ray R 1978 J. Appl. Phys. 49 4178

    [10]

    Luborsky F E, Walter J L 1980 US Patent. 4 217 135

    [11]

    Hatta S, Egami T, Graham C D 1979 Appl. Phys. Lett. 34 113

    [12]

    Sherwood R C, Gyorgy E M, Chen H S, Ferris S D, Norman G, Leamy H J 1975 AIP Conf. Proc. 24 745

    [13]

    OHandley R C, Mendelson L I, Nesbitt E A 1976 IEEE Trans. Magn. Mag. 12 942

    [14]

    Simpson A W, Brambley D R 1971 Phys. Status Solidi 43 291

    [15]

    Chi G C, Cargill G S 1976 Mater. Sci. Eng. 23 155

    [16]

    Hasegawa R, Chien C L 1976 Solid State Commun. 18 913

    [17]

    Fujimori H, Yoshimoto H, Masumoto T, Mitera T 1981 J. Appl. Phys. 52 189

    [18]

    Narasimhan M C 1979 US Patent 4 142 571

    [19]

    Luborsky F E, Walter J L 1980 US Patent 4 217 135

    [20]

    DeCristofaro N J, Freilich A, Nathasingh D M 1980 US Patent 4 219 355

    [21]

    Zhou S X, Lu Z C, Chen J C 2002 Physics 31 430(in Chinese) [周少雄, 卢志超, 陈金昌 2002 物理 31 430]

    [22]

    Herzer G 2005 J. Magn. Magn. Mater. 294 99

    [23]

    Herzer G 2013 Acta Mater. 61 718

    [24]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044

    [25]

    Hono K, Ping D, Ohnuma M, Onodera H 1999 Acta Mater. 47 997

    [26]

    Suzuki K, Makino A, Inoue A, Masumoto T 1991 J. Appl. Phys. 70 6232

    [27]

    Willard M A, Laughlin D E, McHenry M E, Thoma D, Sickafus K, Cross J O, Harris V 1998 J. Appl. Phys. 84 6773

    [28]

    Ogawa Y, Naoe M, Yoshizawa Y, Hasegawa R 2006 J. Magn. Magn. Mater. 304 e675

    [29]

    Makino A, Kubota T, Chang C, Makabe M, Inoue A 2007 Mater. Trans. 48 3024

    [30]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans.. 50 204

    [31]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 IEEE Trans. Magn. 45 4302

    [32]

    Matsuura M, Nishijima M, Takenaka K, Takeuchi A, Ofuchi H, Makino A 2015 J. Appl. Phys. 117 17A324

    [33]

    Gao J E, Li H X, Jiao Z B, Wu Y, Chen Y H, Yu T, L Z P 2011 Appl. Phys. Lett. 99 052504

    [34]

    Liu F J, Yao K F, Ding H Y 2011 Intermetallics 19 1674

    [35]

    Zhang J, Chang C, Wang A, Shen B 2012 J. Non-Cryst. Solids 358 1443

    [36]

    Wang A, Zhao C, Men H, He A, Chang C, Wang X 2015 J. Alloy. Compd. 630 209

    [37]

    Ohta M, Yoshizawa Y 2011 J. Phys. D: Appl. Phys. 44 064004

    [38]

    Kong F, Men H, Liu T, Shen B 2012 J. Appl. Phys. 111 07A311

    [39]

    Fan X, Men H, Ma A, Shen B 2013 J. Magn. Magn. Mater. 326 22

    [40]

    Xiang Z, Wang A, Zhao C, Men H, Wang X, Chang C 2015 J. Alloy. Compd. 622 1000

    [41]

    Sharma P, Zhang X, Zhang Y, Makino A 2015 Scripta Mater. 95 3

    [42]

    Jafari S, Beitollahi A, Yekta B E, Ohkubo T, Budinsky V, Marsilius M, Herzer G, Hono K 2016 J. Alloy. Compd. 674 136

    [43]

    Suzuki K, Parsons R, Zang B, Onodera K, Kishimoto H, Kato A 2017 Appl. Phys. Lett. 110 012407

    [44]

    Li J F, Liu X, Zhao S F, Ding H Y, Yao K F 2015 J. Magn. Magn. Mater. 386 107

    [45]

    Li J F, Shao Y, Liu X, Yao K F 2015 Sci. Bull. 60 396

  • [1] Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo. Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass. Acta Physica Sinica, 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [3] Han Ze-Yu, Song Cheng-Ji, Zhou Jie, Zheng Fu. Effects of underlayer on structures and magnetic properties of Fe65Co35 alloy films. Acta Physica Sinica, 2022, 71(15): 157501. doi: 10.7498/aps.71.20220476
    [4] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [5] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [6] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [7] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [8] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [10] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [11] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [12] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [13] Cao Cheng-Cheng, Fan Jue-Wen, Zhu Li, Meng Yang, Wang Yin-Gang. Effects of relaxation time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy. Acta Physica Sinica, 2017, 66(16): 167501. doi: 10.7498/aps.66.167501
    [14] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [15] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [16] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [17] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [19] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [20] Yang Quan-Min, Wang Ling-Ling. Influence of frequency on magnetic properties of Fe73.5Cu1 Nb3Si13.5B9 and the explanation. Acta Physica Sinica, 2005, 54(9): 4256-4262. doi: 10.7498/aps.54.4256
Metrics
  • Abstract views:  20953
  • PDF Downloads:  2012
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2017
  • Accepted Date:  19 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回