Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Passively Q-switched mode-locked low threshold Tm, Ho: LLF laser with an single walled carbon nanotubes saturable absorber

Ling Wei-Jun Xia Tao Dong Zhong Zuo Yin-Yan Li Ke Liu Qing Lu Fei-Ping Zhao Xiao-Long Wang Yong-Gang

Citation:

Passively Q-switched mode-locked low threshold Tm, Ho: LLF laser with an single walled carbon nanotubes saturable absorber

Ling Wei-Jun, Xia Tao, Dong Zhong, Zuo Yin-Yan, Li Ke, Liu Qing, Lu Fei-Ping, Zhao Xiao-Long, Wang Yong-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Employing single walled carbon nanotubes (SWCNT) grown by the vertical growth method as a saturable absorber for the initiation of the pulse generation, and designing a low threshold resonant cavity, we demonstrate a stable passively Q-switched mode-locked (QML) Tm, Ho:LiLuF4 solid-state laser with low threshold for the first time. With wavelength tunable Ti:sapphire solid laser operating at 785 nm as a pumping source, continuous-wave (CW) absorbed pump thresholds of 52, 59 and 62 mW are obtained by using 1.5%, 3% and 5% output coupled mirrors respectively. In this case, the maximum output powers are 645, 828 and 940 mW respectively, whose corresponding slope deficiencies are 31.02%, 39.16% and 43.78%, respectively. When the SWCNT-SAs is inserted in the cavity, the cavity loss is further increased, so the laser threshold is improved. Employing the 1.5% output mirror, a laser threshold is obtained to be as low as 85 mW, but the maximum laser output power is only 70 mW, corresponding slope efficiency is 3.42%; employing the 3% output coupling mirror, the laser threshold is obtained to be as low as 99 mW, the maximum output power is 154 mW, and the corresponding slope efficiency is 8.47%; employing the 5% output mirror, owing to the loss in the cavity being too large, the QML operation cannot be achieved. The output power of the 3% output mirror is twice higher than that of the 1.5% output mirror, but the laser threshold difference is only 14 mW. With a comprehensive analysis, we use the 3% output mirror. In this case, a stable QML operation with a threshold of 250 mW is obtained. When the absorption pump power is 1.85 W, the maximum output power is 154 mW with a typical Q-switched pulse envelope width of 300 s, which is corresponding to a 178.6 MHz of the mode-locked frequency. The modulation depth in Q-switching envelope is close to 100%. According to the definition of the rise time and considering the symmetric shape of the mode locked pulse, we could assume the duration of the pulse to be approximately 1.25 times more than the rise time of the pulse. So the width of the mode locked pulse is estimated to be about 663 ps. The results show that the SWCNT is a promising SA for QML solid-state laser with the 2 m wavelength. In the later stage, we increase the pump power, optimize the quality of the SWCNT material, and compensate for the dispersion in the cavity. It is expected to achieve a stable continuous mode-locking operation, and obtain a femtosecond mode-locked ultrashort pulse output. The mode-locked mid-infrared pulses have a lot of potential applications such as ultrafast molecule spectroscopy, the generation of mid-IR pulse, laser radar, atmospheric environment monitoring, etc.
      Corresponding author: Ling Wei-Jun, wjlingts@sina.com;dz0212@foxmail.com ; Dong Zhong, wjlingts@sina.com;dz0212@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61465012, 61564008, 11774257, 61461046, 61665010, 61661046).
    [1]

    Polder K D, Bruce S 2012 Dermatol. Surg. 38 199

    [2]

    Browell E V, Spiers G D, Jacob J, Christensen L E, Phillips M W, Menzies R T 2011 Appl. Opt. 50 2098

    [3]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A 2010 Opt. Lett. 35 3027

    [4]

    Kong L C, Qin Z P, Xie G Q, Xu X D, Xu J, Yuan P, Qian L 2015 J. Opt. Lett.. 40 356

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Hrknen A, Guina M, Steinmeyer G, Mateos X, Veronesi S, Tonelli M, Li J, Pan Y, Guo J, Griebner U 2015 Opt. Express 23 1361

    [6]

    Wang Y C, Xie G Q, Xu X D, Di J Q, Qin Z P, Suomalainen S, Guina M, Hrknen A, Agnesi A, Griebner U, Mateos X, Loiko P, Petrov V 2016 Opt. Mater. Express 6 131

    [7]

    Luan C, Yang K, Zhao J, Zhao S, Li T, Zhang H, He J, Song L, Dekorsy T, Guina M, Zheng L 2017 Opt. Lett. 42 839

    [8]

    Set S Y, Yaguchi H, Tanaka Y, Jablonski M 2004 J. Lightwave Technol. 22 51

    [9]

    Rotermund F 2012 Quantum. Electron. 42 663

    [10]

    Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J, Hsieh W F 2011 Opt. Lett. 36 1284

    [11]

    Liu Y, Wang Y, Liu J, Liu C 2011 Appl. Phys.. 104 835

    [12]

    Cho W B, Yim J H, Sun Y C, Lee S, Rotermund F, Schmidt A, Petrov V, Steinmeyer G, Griebner U, Mateos X, Pujol M C, Carvajal J J, Aguilo M, Diaz F 2010 Sources and Related Photonic Devices (OSA Technical Digest Series (CD)) pATuA3 (in America). https://doi.org/10.1364/ASSP.2010.ATuA3

    [13]

    Schmidt A, Choi S 2012 Appl. Phys. Express 5 2704

    [14]

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207(in Chinese) [令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207]

    [15]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [16]

    Read K, Blonigen F, Riccelli N, Murnane M, Kapteyn H 1996 Opt. Lett. 21 489

    [17]

    Kowalevicz A M, Schibli T R, Krtner F X, Fujimoto J G 2002 Opt. Lett. 27 2037

    [18]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619(in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [19]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H 2010 Laser Phys. 20 761

  • [1]

    Polder K D, Bruce S 2012 Dermatol. Surg. 38 199

    [2]

    Browell E V, Spiers G D, Jacob J, Christensen L E, Phillips M W, Menzies R T 2011 Appl. Opt. 50 2098

    [3]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A 2010 Opt. Lett. 35 3027

    [4]

    Kong L C, Qin Z P, Xie G Q, Xu X D, Xu J, Yuan P, Qian L 2015 J. Opt. Lett.. 40 356

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Hrknen A, Guina M, Steinmeyer G, Mateos X, Veronesi S, Tonelli M, Li J, Pan Y, Guo J, Griebner U 2015 Opt. Express 23 1361

    [6]

    Wang Y C, Xie G Q, Xu X D, Di J Q, Qin Z P, Suomalainen S, Guina M, Hrknen A, Agnesi A, Griebner U, Mateos X, Loiko P, Petrov V 2016 Opt. Mater. Express 6 131

    [7]

    Luan C, Yang K, Zhao J, Zhao S, Li T, Zhang H, He J, Song L, Dekorsy T, Guina M, Zheng L 2017 Opt. Lett. 42 839

    [8]

    Set S Y, Yaguchi H, Tanaka Y, Jablonski M 2004 J. Lightwave Technol. 22 51

    [9]

    Rotermund F 2012 Quantum. Electron. 42 663

    [10]

    Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J, Hsieh W F 2011 Opt. Lett. 36 1284

    [11]

    Liu Y, Wang Y, Liu J, Liu C 2011 Appl. Phys.. 104 835

    [12]

    Cho W B, Yim J H, Sun Y C, Lee S, Rotermund F, Schmidt A, Petrov V, Steinmeyer G, Griebner U, Mateos X, Pujol M C, Carvajal J J, Aguilo M, Diaz F 2010 Sources and Related Photonic Devices (OSA Technical Digest Series (CD)) pATuA3 (in America). https://doi.org/10.1364/ASSP.2010.ATuA3

    [13]

    Schmidt A, Choi S 2012 Appl. Phys. Express 5 2704

    [14]

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207(in Chinese) [令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207]

    [15]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [16]

    Read K, Blonigen F, Riccelli N, Murnane M, Kapteyn H 1996 Opt. Lett. 21 489

    [17]

    Kowalevicz A M, Schibli T R, Krtner F X, Fujimoto J G 2002 Opt. Lett. 27 2037

    [18]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619(in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [19]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H 2010 Laser Phys. 20 761

  • [1] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [2] Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [3] Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang. Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber. Acta Physica Sinica, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [4] Liu Li-Juan, Huang Wen-Bin, Diao Zhi-Hui, Zhang Gui-Yang, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Low threshold distributed feedback laser based on scaffolding morphologic and holographic polymer dispersed liquid crystal gratings. Acta Physica Sinica, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [5] Dong Xin-Zheng, Yu Zhen-Hua, Tian Jin-Rong, Li Yan-Lin, Dou Zhi-Yuan, Hu Meng-Ting, Song Yan-Rong. A 147 fs mode-locked erbium-doped fiber laser with a carbon nanotubes saturable absorber in evanescent field. Acta Physica Sinica, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [6] Qiao Liang, Yang Fu-Gui, Wu Yong-Hua, Ke You-Gang, Xia Zhong-Chao. Theoretical and experimental researches on Tm and Ho codoped Q-switching laser. Acta Physica Sinica, 2014, 63(21): 214205. doi: 10.7498/aps.63.214205
    [7] Wang Sha-Sha, Pan Yu-Zhai, Gao Ren-Xi, Zhu Xiu-Fen, Su Xiao-Hui, Qu Shi-Liang. Mode-locked double-clad fiber laser with a carbon nanotubes saturable absorber. Acta Physica Sinica, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [8] Zhang Jun, Tan Ping-Heng, Zhao Wei-Jie. Accurate determination of electronic transition energy of carbon nanotubes from the resonant behavior of radial breathing modes and their overtones. Acta Physica Sinica, 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [9] Lin Zhi-Feng, Zhang Yun-Shan, Gao Chun-Qing, Gao Ming-Wei. Experimental investigation of LD-pumped Cr,Tm,Ho∶YAG single longitudinal mode microchip laser. Acta Physica Sinica, 2009, 58(3): 1689-1693. doi: 10.7498/aps.58.1689
    [10] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun, Jiang Bo. Theoretical and experimental investigation of optical bistability in end-pumped Tm,Ho:YLF lasers. Acta Physica Sinica, 2009, 58(2): 964-969. doi: 10.7498/aps.58.964
    [11] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Cui Jin-Hui, Ju You-Lun. Laser parameter optimization and experimental study of end-pumped continuous wave Tm,Ho∶YLF lasers. Acta Physica Sinica, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [12] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun. Optical bistability performance of laser-diode end-pumped Tm, Ho: YLF laser. Acta Physica Sinica, 2008, 57(3): 1699-1703. doi: 10.7498/aps.57.1699
    [13] Ma Yan-Ping, Shang Xue-Fu, Gu Zhi-Qi, Li Zhen-Hua, Wang Miao, Xu Ya-Bo. The application of single-walled carbon nanotubes in field emission display. Acta Physica Sinica, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [14] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun. Fractional thermal loading and thermal lensing in end-pumped Tm,Ho:YLF lasers. Acta Physica Sinica, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [15] Zhang Xin-Lu, Wang Yue-Zhu. Influence of energy-transfer up-conversion on upper level lifetime of Tm, Ho:YLF Q-switched laser. Acta Physica Sinica, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [16] Zhang Xin-Lu, Wang Yue-Zhu, Shi Hong-Feng. Diode-end-pumped CW Tm,Ho:YLF solid-state laser working at room temperature. Acta Physica Sinica, 2006, 55(4): 1787-1792. doi: 10.7498/aps.55.1787
    [17] Ling Wei-Jun, Wei Zhi-Yi, Sun Jing-Hua, Wang Zhao-Hua, Tian Jin-Rong, Jia Yu-Lei, Wang Peng, Han Hai-Nian. Experimental study of femtosecond Ti:sapphire laser with low-threshold pump. Acta Physica Sinica, 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [18] Ling Wei-Jun, Zheng Jia-An, Jia Yu-Lei, Wei Zhi-Yi. Theoretical study of the Ti:sapphire laser with low pump threshold. Acta Physica Sinica, 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [19] Zhang Xin-Lu, Wang Yue-Zhu, Ju You-Lun. Influence of energy-transfer up-conversion on Tm, Ho:YLF laser threshold. Acta Physica Sinica, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [20] . Acta Physica Sinica, 2002, 51(2): 444-448. doi: 10.7498/aps.51.444
Metrics
  • Abstract views:  6982
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2017
  • Accepted Date:  16 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回