-
A watt-level passive Q-switched mode-locked operation in Tm: LuAG all-solid-state laser is realized for the first time by using graphene oxide (GO) saturable absorber as a mode-locked starting element. The laser is pumped by a wavelength tunable Ti: sapphire laser operating at 794.2 nm. In this experiment, the maximum continuous-wave (CW) output power of 1440 mW, 2030 mW and 2610 mW are obtained by 1.5%, 3% and 5% output coupled (OC) mirrors respectively, in which the corresponding slope efficiencies are 22.3%, 32.6% and 40.6%, respectively. When the GO is inserted into the cavity, the laser bump threshold is further increased due to more intracavity loss. With a 1.5% OC mirror, the absorbed pump threshold is as low as 325 mW, the maximum output power is 787 mW, and the corresponding slope efficiency is 12.5%. With a 3% OC mirror, the absorbed bump threshold is 351 mW, the maximum output power is 1740 mW, and corresponding slope efficiency is 30.3%. With a 5% OC mirror, the QML operation is not realized due to the increase of intracavity loss. Although the laser pump threshold power of 3% OC mirror differs from that of 1.5% OC mirror by 26 mW, the output power is more than twice higher than that of 1.5% OC mirror. For these reasons, we use a 3% OC mirror in our experiment. In this case, a stable QML operation with a threshold of 3420 mW is obtained. When the pump power reaches 8.1 W, the corresponding maximum output power is 1740 mW, the central wavelength is 2023 nm, the repetition frequency is 104.2 MHz, the maximum single pulse energy is 16.7 nJ, and the modulation depth is close to 100%. According to the symmetrical shape of the mode locked pulse and considering the definition of rise time, we can assume that the duration of the pulse is approximately 1.25 times the pulse rise time. So the width of the mode locked pulse is estimated at about 923.8 ps. The results show that the GO is a promising high power saturable absorber in 2 μm wavelength for the QML solid-state laser. In the next stage, we will increase the pump power, optimize the quality of the GO material, and compensate for the dispersion in the cavity. It is expected to achieve a CW mode-locked operation and femtosecond pulse output.
-
Keywords:
- high power /
- Tm: LuAG laser /
- Q-switched mode-locking /
- graphene oxide
[1] Kaufmann R, Hibst R 1996 Lasers Surg. Med. 19 324Google Scholar
[2] Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picqué N 2007 Opt. Express 15 16540Google Scholar
[3] Li J, Luo H, Wang L, Liu Y, Yan Z, Zhou K, Zhang L, Turistsyn S K 2015 Sci. Rep. 5 10770Google Scholar
[4] Yao B Q, Shen Y J, Duan X M, Dai T Y, Ju Y L, Wang Y Z 2014 Opt. Lett. 39 6589Google Scholar
[5] Feng T, Yang K, Zhao J, Zhao S, Qiao W, Li T, Dekorsy T, He J, Zheng L, Wang Q 2015 Opt. Express 23 11819Google Scholar
[6] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚 2008 物理学报 67 014201
Ling W J, Xia T, Dong Z, Zuo Y Y, Li K, Liu Q, Lu F P, Zhao X L, Wang Y G 2008 Acta Phys. Sin. 67 014201
[7] Cho W B, Schmidt A, Yim J H, Choi S Y, Lee S, Rotermund F, Griebner U, Steinmeyer G, Petrov V, Mateos X, Pujol M C, Carvajal J J, Aguiló M, Díaz F 2009 Opt. Express 17 11007Google Scholar
[8] Zou X, Leng Y, Li Y, Feng Y, Zhang P, Hang Y, Wang J 2015 Chin. Opt. Lett. 13 081405
[9] Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47Google Scholar
[10] Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D, Li Z, Man B, Si J 2015 Opt. Express 23 28698Google Scholar
[11] Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Huang Q J, Zhang C, Bi D, Meng X, Liu F Y 2014 Opt. Laser Technol. 56 393Google Scholar
[12] Ma J, Xie G Q, Lü P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y 2012 Opt. Lett. 37 2085Google Scholar
[13] Ma J, Xie G, Zhang J, Yuan P, Tang D, Qian L 2015 IEEE J. Sel. Top. Quantum Electron. 21 50Google Scholar
[14] Zhu Y, Murali S, Cai W, Li X, Ji W S, Potts J R, Ruoff R S 2010 Adv. Mater. (Weinheim, Ger. )
22 3906Google Scholar [15] Zhang L, Wang Y G, Yu H J, Zhang S B, Hou W, Lin X C, Li J M 2011 Laser Phys. 21 2072Google Scholar
[16] Wang Y, Qu Z, Liu J, Tsang Y H 2012 J. Lightwave Technol. 30 3259Google Scholar
[17] Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar
[18] Wu C, Ju Y, Li Y, Wang Z, Wang Y 2008 Chin. Opt. Lett. 6 415Google Scholar
[19] 周鼎 2017 博士学位论文 (上海: 上海大学)
Zhou D 2007 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)
[20] Wu C T, Ju Y L, Wang Q, Wang Z G, Chen F, Zhou R L, Wang Y Z 2009 Laser Phys. Lett. 6 707Google Scholar
[21] Chen F, Wu C T, Ju Y L, Yao B Q, Wang Y Z 2012 Laser Phys. 22 371Google Scholar
[22] Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608Google Scholar
[23] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[24] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[25] Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar
-
-
[1] Kaufmann R, Hibst R 1996 Lasers Surg. Med. 19 324Google Scholar
[2] Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picqué N 2007 Opt. Express 15 16540Google Scholar
[3] Li J, Luo H, Wang L, Liu Y, Yan Z, Zhou K, Zhang L, Turistsyn S K 2015 Sci. Rep. 5 10770Google Scholar
[4] Yao B Q, Shen Y J, Duan X M, Dai T Y, Ju Y L, Wang Y Z 2014 Opt. Lett. 39 6589Google Scholar
[5] Feng T, Yang K, Zhao J, Zhao S, Qiao W, Li T, Dekorsy T, He J, Zheng L, Wang Q 2015 Opt. Express 23 11819Google Scholar
[6] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚 2008 物理学报 67 014201
Ling W J, Xia T, Dong Z, Zuo Y Y, Li K, Liu Q, Lu F P, Zhao X L, Wang Y G 2008 Acta Phys. Sin. 67 014201
[7] Cho W B, Schmidt A, Yim J H, Choi S Y, Lee S, Rotermund F, Griebner U, Steinmeyer G, Petrov V, Mateos X, Pujol M C, Carvajal J J, Aguiló M, Díaz F 2009 Opt. Express 17 11007Google Scholar
[8] Zou X, Leng Y, Li Y, Feng Y, Zhang P, Hang Y, Wang J 2015 Chin. Opt. Lett. 13 081405
[9] Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47Google Scholar
[10] Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D, Li Z, Man B, Si J 2015 Opt. Express 23 28698Google Scholar
[11] Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Huang Q J, Zhang C, Bi D, Meng X, Liu F Y 2014 Opt. Laser Technol. 56 393Google Scholar
[12] Ma J, Xie G Q, Lü P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y 2012 Opt. Lett. 37 2085Google Scholar
[13] Ma J, Xie G, Zhang J, Yuan P, Tang D, Qian L 2015 IEEE J. Sel. Top. Quantum Electron. 21 50Google Scholar
[14] Zhu Y, Murali S, Cai W, Li X, Ji W S, Potts J R, Ruoff R S 2010 Adv. Mater. (Weinheim, Ger. )
22 3906Google Scholar [15] Zhang L, Wang Y G, Yu H J, Zhang S B, Hou W, Lin X C, Li J M 2011 Laser Phys. 21 2072Google Scholar
[16] Wang Y, Qu Z, Liu J, Tsang Y H 2012 J. Lightwave Technol. 30 3259Google Scholar
[17] Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar
[18] Wu C, Ju Y, Li Y, Wang Z, Wang Y 2008 Chin. Opt. Lett. 6 415Google Scholar
[19] 周鼎 2017 博士学位论文 (上海: 上海大学)
Zhou D 2007 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)
[20] Wu C T, Ju Y L, Wang Q, Wang Z G, Chen F, Zhou R L, Wang Y Z 2009 Laser Phys. Lett. 6 707Google Scholar
[21] Chen F, Wu C T, Ju Y L, Yao B Q, Wang Y Z 2012 Laser Phys. 22 371Google Scholar
[22] Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608Google Scholar
[23] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[24] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[25] Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar
Catalog
Metrics
- Abstract views: 8791
- PDF Downloads: 68
- Cited By: 0