Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature

Chen Hao Peng Tong-Jiang Liu Bo Sun Hong-Juan Lei De-Hui

Citation:

Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature

Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As precursors exfoliated from graphite oxide gels, graphene oxide thin films are annealed in a temperature range of 100 ℃ to 350 ℃ to obtain a series of reduced graphene oxide samples with different reduction degrees. For the gas sensing experiments, the reduced graphene oxide thin film gas sensing element is prepared by spin coating with Ag-Pd integrated electronic device (Ag-Pd IED). The functional groups, structures, and gas sensing performance of all the samples are investigated by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and gas sensing measurement. The results show that the structure of the graphene oxide samples are transformed to the graphitic structure after reduction at different thermal treatment temperatures. When the reduction temperature is lower than 150 ℃, materials exhibit features of graphite oxide. When the reduction temperature reaches about 200 ℃, the samples show characteristics transformed from graphite oxide to reduced graphite oxide gradually. When the temperature is higher than 250 ℃, materials show features of reduced graphite oxide. During the reduction process, the disorder degree increases from 0.85 to 1.59, and then decreases slightly to 1.41 with the rise of temperature. Additionally, the oxygen containing functional groups are removed with the increasing reduction temperature, and these functional groups can be removed at specific temperatures. In the lower temperature stage (100-200 ℃), the first kind of oxygen containing functional group removed is the hydroxyl group (C-OH) and the epoxy group (C-O-C) is the second. In the higher temperature stage (250-350 ℃), the main removed oxygen containing functional groups are the epoxy group (C-O-C) and the carbonyl group (C=O). The materials treated at 150, 200, 350 ℃ exhibit n-type, ambipolar, and p-type behaviors, respectively, while rGO-200 exhibits considerable increase in resistance upon exposure to hydrogen gas. rGO-200 exhibits very small decrease of resistance at room temperature and moderate increase of resistance at elevated temperatures upon exposure to hydrogen gas, while rGO-350 exhibits considerable decrease of resistance at room temperature upon exposure to hydrogen gas. These results indicate that the reduction temperature affects the distribution of density of states (DOS) in the band gap as well as the band gap size. The graphene oxide and the reduced products at low temperature show good sensitivity to hydrogen gas. With the increasing reduction temperature, the sensitivity fades while the response time and recovery time increases. The gas sensor exhibits high sensitivity (88.56%) and short response time (30 s) when exposed to the 10-4 hydrogen gas at room temperature.
      Corresponding author: Peng Tong-Jiang, tjpeng@swust.edu.cn;sunhongjuan@swust.edu.cn ; Sun Hong-Juan, tjpeng@swust.edu.cn;sunhongjuan@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1630132, 41272051) and the Postgraduate Innovation Fund of Southwest University of Science and Technology, China (Grant No. 15ycx074).
    [1]

    Wada K, Egashira M 2000 Sens. Actuators B 62 211

    [2]

    Park S J, Park J, Lee H Y, Moon S E, Park K H, Kim J, Maeng S, Udrea F, Milne W I, Kim G T 2010 J. Nanosci. Nanotechno. 10 3385

    [3]

    Moon S E, Lee H Y, Park J, Lee J W, Choi N J, Park S J, Kwak J H, Park K H, Kim J, Cho G H, Lee T H, Maeng S, Udrea F, Milne W I 2010 J. Nanosci. Nanotechno. 10 3189

    [4]

    Miyazaki H, Hyodo T, Shimizu Y, Egashira M 2005 Sens. Actuators B 108 467

    [5]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 物理学报 65 248103]

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [7]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Seo D K, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuators B. 166-167 172

    [8]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Krl P, Salehi-Khojin A 2014 Nat. Commun. 5 4911

    [9]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29

    [10]

    Guo L, Jiang H B, Shao R Q, Zhang Y L, Xie S Y, Wang J N, Li X B, Jiang F, Chen Q D, Zhang T, Sun H B 2012 Carbon. 50 1667

    [11]

    Peng Y, Li J H 2013 Front. Environ. Sci. Eng. 7 403

    [12]

    You R C, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon. 91 178

    [13]

    Chu B H, Lo C F, Nicolosi J, Chang C Y, Chena V, Strupinskic W, Peartonb S J, Rena F 2011 Sens. Actuators B. 157 500

    [14]

    Pandey P A, Wilson N R, Covington J A 2013 Sens. Actuators B. 183 478

    [15]

    Anand K, Singh O, Singh M P, Kaur J, Singh R C 2014 Sens. Actuators B 195 409

    [16]

    Hou R N, Peng T J, Sun H J 2015 J. Funct. Mater. 46 16079 (in Chinese) [侯若男, 彭同江, 孙红娟 2015 功能材料 46 16079]

    [17]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426

    [18]

    Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 19351

    [19]

    Yang Y H, Sun H J, Peng T J, Huang Q 2011 Acta Phys.-Chim. Sin. 27 736 (in Chinese) [杨永辉, 孙红娟, 彭同江, 黄桥 2011 物理化学学报 27 736]

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Wang J D, Peng T J, Sun H J 2014 Acta Phys.-Chim. Sin. 30 2077 (in Chinese) [汪建德, 彭同江, 孙红娟 2014 物理化学学报 30 2077]

    [22]

    Ferrari A C 2007 Solid State Commun. 143 47

    [23]

    Chen J G, Peng T J, Sun H J 2014 J. Inorg. Chem. 30 779 (in Chinese) [陈军刚, 彭同江, 孙红娟 2014 无机化学学报 30 779]

    [24]

    Bi H, Yin K, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M 2013 Sci Rep. 3 2714

    [25]

    Rimeika R, Barkauskas J, Čiplys D 2011 Appl Phys Lett. 99 051915

    [26]

    Shang D, Lin L B, He J 2005 J. Sichuan University 42 523 (in Chinese) [尚东, 林理彬, 何捷 2005 四川大学学报(自然科学版) 42 523]

    [27]

    Hou R N, Peng T J, Sun H J 2014 J. Synthe. Cry. 43 2656 (in Chinese) [侯若男, 彭同江, 孙红娟 2014 人工晶体学报 43 2656]

    [28]

    Wang J, Kwak Y, Lee I Y, Maeng S, Kim G H 2012 Carbon 50 4061

    [29]

    Xu Z, Xue K 2010 Nanotechnology 21 19

    [30]

    Boukhvalov D W, Katsnelson M I 2008 J. Am. Chem. Soc. 130 10697

    [31]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504

  • [1]

    Wada K, Egashira M 2000 Sens. Actuators B 62 211

    [2]

    Park S J, Park J, Lee H Y, Moon S E, Park K H, Kim J, Maeng S, Udrea F, Milne W I, Kim G T 2010 J. Nanosci. Nanotechno. 10 3385

    [3]

    Moon S E, Lee H Y, Park J, Lee J W, Choi N J, Park S J, Kwak J H, Park K H, Kim J, Cho G H, Lee T H, Maeng S, Udrea F, Milne W I 2010 J. Nanosci. Nanotechno. 10 3189

    [4]

    Miyazaki H, Hyodo T, Shimizu Y, Egashira M 2005 Sens. Actuators B 108 467

    [5]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 物理学报 65 248103]

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [7]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Seo D K, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuators B. 166-167 172

    [8]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Krl P, Salehi-Khojin A 2014 Nat. Commun. 5 4911

    [9]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29

    [10]

    Guo L, Jiang H B, Shao R Q, Zhang Y L, Xie S Y, Wang J N, Li X B, Jiang F, Chen Q D, Zhang T, Sun H B 2012 Carbon. 50 1667

    [11]

    Peng Y, Li J H 2013 Front. Environ. Sci. Eng. 7 403

    [12]

    You R C, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon. 91 178

    [13]

    Chu B H, Lo C F, Nicolosi J, Chang C Y, Chena V, Strupinskic W, Peartonb S J, Rena F 2011 Sens. Actuators B. 157 500

    [14]

    Pandey P A, Wilson N R, Covington J A 2013 Sens. Actuators B. 183 478

    [15]

    Anand K, Singh O, Singh M P, Kaur J, Singh R C 2014 Sens. Actuators B 195 409

    [16]

    Hou R N, Peng T J, Sun H J 2015 J. Funct. Mater. 46 16079 (in Chinese) [侯若男, 彭同江, 孙红娟 2015 功能材料 46 16079]

    [17]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426

    [18]

    Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 19351

    [19]

    Yang Y H, Sun H J, Peng T J, Huang Q 2011 Acta Phys.-Chim. Sin. 27 736 (in Chinese) [杨永辉, 孙红娟, 彭同江, 黄桥 2011 物理化学学报 27 736]

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Wang J D, Peng T J, Sun H J 2014 Acta Phys.-Chim. Sin. 30 2077 (in Chinese) [汪建德, 彭同江, 孙红娟 2014 物理化学学报 30 2077]

    [22]

    Ferrari A C 2007 Solid State Commun. 143 47

    [23]

    Chen J G, Peng T J, Sun H J 2014 J. Inorg. Chem. 30 779 (in Chinese) [陈军刚, 彭同江, 孙红娟 2014 无机化学学报 30 779]

    [24]

    Bi H, Yin K, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M 2013 Sci Rep. 3 2714

    [25]

    Rimeika R, Barkauskas J, Čiplys D 2011 Appl Phys Lett. 99 051915

    [26]

    Shang D, Lin L B, He J 2005 J. Sichuan University 42 523 (in Chinese) [尚东, 林理彬, 何捷 2005 四川大学学报(自然科学版) 42 523]

    [27]

    Hou R N, Peng T J, Sun H J 2014 J. Synthe. Cry. 43 2656 (in Chinese) [侯若男, 彭同江, 孙红娟 2014 人工晶体学报 43 2656]

    [28]

    Wang J, Kwak Y, Lee I Y, Maeng S, Kim G H 2012 Carbon 50 4061

    [29]

    Xu Z, Xue K 2010 Nanotechnology 21 19

    [30]

    Boukhvalov D W, Katsnelson M I 2008 J. Am. Chem. Soc. 130 10697

    [31]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504

  • [1] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting. SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature. Acta Physica Sinica, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [2] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie. Preparation and room-temperature NO2 sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [3] Zhang Gai, Xie Hai-Mei, Song Hai-Bin, Li Xiao-Fei, Zhang Qian, Kang Yi-Lan. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes. Acta Physica Sinica, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [4] Li Xing-Long, Zhao Hao-Yu, Wu Wen-Jie, Jiang Wei-Feng, Zheng Jia-Jin, Zhang Zu-Xing, Yu Ke-Han, Wei Wei. Graphene oxide modified tilted fiber Bragg grating for 10–12 level heavy metal ion sensing. Acta Physica Sinica, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [5] Lu Hai-Lin, Duan Fang-Li. Motion behavior of graphene sheets and friction characteristics between the interfaces of silicon-based materials. Acta Physica Sinica, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [6] Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo. Research progress of room temperature magnetic skyrmion and its application. Acta Physica Sinica, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [7] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [8] Li Chuang, Cai Li, Li Wei-Wei, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Li Cheng, Wei Bo. Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide. Acta Physica Sinica, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [9] Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Physica Sinica, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [10] Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [11] Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua. Temperature-dependent properties of metastable graphene oxide. Acta Physica Sinica, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [12] Li Wen-Jing, Guang Yao, Yu Guo-Qiang, Wan Cai-Hua, Feng Jia-Feng, Han Xiu-Feng. Skyrmions in magnetic thin film heterostructures. Acta Physica Sinica, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [13] Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [14] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [15] Cao Hai-Yan, Bi Heng-Chang, Xie Xiao, Su Shi, Sun Li-Tao. Functional tissues based on graphene oxide: facile preparation and dye adsorption properties. Acta Physica Sinica, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [16] Huang Shi-Sheng, Wang Yong-Gang, Li Hui-Quan, Lin Rong-Yong, Yan Pei-Guang. Experimental studies of multiple pulses in a passively ytterbium-doped fiber laser based on graphene-oxide saturable absorber. Acta Physica Sinica, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [17] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [18] Gao Yan, Chen Rui-Yun, Wu Rui-Xiang, Zhang Guo-Feng, Xiao Lian-Tuan, Jia Suo-Tang. Electric field induced polarization dynamics of graphene oxide. Acta Physica Sinica, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [19] Qin Yu-Xiang, Wang Fei, Shen Wan-Jiang, Hu Ming. Room temperature NO2-sensing properties and mechanism of the sensors based on tungsten oxide nanowires/single-wall carbon nanotubes composites. Acta Physica Sinica, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [20] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
Metrics
  • Abstract views:  10901
  • PDF Downloads:  700
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2016
  • Accepted Date:  12 December 2016
  • Published Online:  05 April 2017

/

返回文章
返回