-
Graphite oxide is synthesized from graphite powder by a modified Hummers method, and the oxidation temperature is controlled in high-temperature oxidation process. By treating graphite oxide powders in a commercial microwave oven, graphene materials can be readily obtained. The morphologies, microstructures, specific surface areas and other features of the graphene and graphite oxide are characterized by FESEM, XPS, XRD and BET. Electrochemical performances of the lithium-ion batteries based on graphene anodes are investigated. The results show that graphene obtained at the oxidation temperature of 90℃ in high-temperature oxidation process actually displays the most remarkable electrochemical performances, that is, the first discharge specific volume and charge capacity of graphene are as high as 1555.5 mAh/g and 1024.6 mAh/g, and after 30 cycles graphene still possess as high as a discharge capacity of 600 mAh/g.
[1] Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666
[2] Zhang Y B, Tan Y W, Stormer H L 2005 Nature Materials 438 201
[3] Falkovsky L A 2008 Physics-Uspekhi 51 887
[4] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
[5] Foster M S, Aleiner I L 2009 Physical Review B 79 5415
[6] Hou X H, Hu S J, Shi L 2010 Acta Phys. Sin. 59 2109 (in Chinese) [侯贤华, 胡社军, 石璐 2010 物理学报 59 2109]
[7] Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 0952 (in Chinese) [侯株锋, 刘慧英, 朱梓忠, 黄美纯, 杨勇 2003 物理学报 52 0952]
[8] Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422
[9] Shi S L, Liu Y G, Zhang J Y, Wang T H 2009 Chin. Phys. B 18 4564
[10] Li J, Yang C Z, Zhang X G, Zhang J, Xiao B J 2009 Acta Phys. Sin. 58 9 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 9]
[11] Zhang J, Hu Y S, Tessonnier J P, Weinberg G., Maier J, Schlogl R, Su D S 2008 Adv. Mater. 20 1450
[12] Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I 2008 Nano. Lett. 8 2277
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[14] Jia L, Xie E Q, Pan X J, Zhang Z X 2009 Acta Phys. Sin. 58 3377 (in Chinese) [贾璐, 谢二庆, 潘孝军, 张振兴 2009物理学报58 3377]
[15] Geim A K, Novoselov K S 2007 Nature Materials 6 183
[16] Fu L, Liu H B, Zou Y H, Li B 2005 Carbon 04 10 (in Chinese) [傅玲, 刘洪波, 邹艳红, 李波 2005 炭素 04 10]
[17] Gnanamuthu R M, Lee C W 2011 Materials Chemistry and Physics 130 831
[18] Zhang Q T, Yu Z L, Du P, Su C 2010 Recent Patents on Nanotechnology 04 100
-
[1] Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666
[2] Zhang Y B, Tan Y W, Stormer H L 2005 Nature Materials 438 201
[3] Falkovsky L A 2008 Physics-Uspekhi 51 887
[4] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
[5] Foster M S, Aleiner I L 2009 Physical Review B 79 5415
[6] Hou X H, Hu S J, Shi L 2010 Acta Phys. Sin. 59 2109 (in Chinese) [侯贤华, 胡社军, 石璐 2010 物理学报 59 2109]
[7] Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 0952 (in Chinese) [侯株锋, 刘慧英, 朱梓忠, 黄美纯, 杨勇 2003 物理学报 52 0952]
[8] Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422
[9] Shi S L, Liu Y G, Zhang J Y, Wang T H 2009 Chin. Phys. B 18 4564
[10] Li J, Yang C Z, Zhang X G, Zhang J, Xiao B J 2009 Acta Phys. Sin. 58 9 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 9]
[11] Zhang J, Hu Y S, Tessonnier J P, Weinberg G., Maier J, Schlogl R, Su D S 2008 Adv. Mater. 20 1450
[12] Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I 2008 Nano. Lett. 8 2277
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[14] Jia L, Xie E Q, Pan X J, Zhang Z X 2009 Acta Phys. Sin. 58 3377 (in Chinese) [贾璐, 谢二庆, 潘孝军, 张振兴 2009物理学报58 3377]
[15] Geim A K, Novoselov K S 2007 Nature Materials 6 183
[16] Fu L, Liu H B, Zou Y H, Li B 2005 Carbon 04 10 (in Chinese) [傅玲, 刘洪波, 邹艳红, 李波 2005 炭素 04 10]
[17] Gnanamuthu R M, Lee C W 2011 Materials Chemistry and Physics 130 831
[18] Zhang Q T, Yu Z L, Du P, Su C 2010 Recent Patents on Nanotechnology 04 100
Catalog
Metrics
- Abstract views: 8936
- PDF Downloads: 866
- Cited By: 0