-
The annealing under different temperatures was performed on boron-doped nanocrystalline diamond films synthesized by hot filament chemical vapor deposition (HFCVD). The effects of annealing on the microstructure and electrochemical properties of films were systematically investigated. The results show that there are four peaks at 1157,1346,1470 and 1555 cm-1 in Raman spectra of the unannealed sample. When the films were annealed at temperatures above 800 ℃, there are only two peaks of D and G band, indicating that the hydrogen in grain boundaries significantly decreased. The area-integrated intensity ratio of D band to G band (ID/IG) reaches minimum value, revealing that the cluster number or cluster size of sp2 phase was reduced. The G peak position shifts to lower wave number, indicating an decrease in the ordering of graphitic component. The electrode exhibits the widest potential window and the highest oxygen evolution potential, and the quasi-reversible reaction occurs on the surface of the samples. The D peak is quite sharp and its intensity increases when the sample was annealed at 1000 ℃. The ID/IG value attains to the maximum value and the G peak position clearly shifts to higher value. The electrode exhibits the narrowest potential window and the lowest oxygen evolution potential, and the reversible electrochemical reaction occurs in the surface of the sample. The above results reveal that the cluster number or cluster size of sp2 phase, the amounts of trans-polyacetylene related to hydrogen in the grain boundaries, the disordering of graphitic components and the boron diffusion in the nanocrystalline diamond films give contributions to the complex change in electrochemical properties of the films with the annealing temperature increasing.
[1] Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 Electroanal. Chem. 473 179
[2] Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 Electrochem. Soc. 146 1469
[3] Xu J S, Chen Q Y, Swain G M 1998 Anal. Chem. 70 3146
[4] Swain G M 1994 Electrochem. Soc. 141 3382
[5] Declements R, Swain G M 1997 Electrochem. Soc. 144 856
[6] Fischer A E, Swain G M 2005 Electrochem. Soc. 152 B369
[7] Wei J J, He Q, Gao X H, Guo H B, Shi S Y, Lü F X, Tang W Z, Chen G C 2007 J. Syn. Crystals 36 569 (in Chinese) [魏俊 俊、贺 琦、高旭辉、郭会斌、石绍渊、吕反修、唐伟忠、陈广超 2007 人工晶体学报 36 569] 〖8] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江、石成儒、吴惠桢 2002 物理学报 51 1870]
[8] Gruen D M 1999 Ann. Rev. Mater. Sci. 29 211
[9] May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105
[10] Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879
[11] Liu C Y, Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业、刘 畅 2003 物理学报 52 1479]
[12] Sun Z, Shi J R, Tay B K 2000 Diam. Rel. Mater. 9 1979
[13] Birrell J, Gerbi J E, Auciello O, Gibson J M, Johnson J, Carlisle J A 2005 Diam. Rel. Mater. 14 86
[14] Zhou Y L, Zhi J F, Zou Y S 2008 Anal. Chem. 80 4141
[15] Ayten A Y, Swope V M, Swain G M 2008 Electrochemical Society 155 B1013
[16] Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669
[17] Ferrari A C, Robertson J 2001 Nanostruct. Carbon 1 77
[18] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
[19] Hao L, Sheldon B W, Kothari A 2006 Appl. Phys. Lett. 100 094309
[20] Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753
[21] Neto M A, Fernandes A J S, Silva R F 2007 Vacuum 81 1416
[22] Arenal R, Montagnac G, Bruno P 2007 Phys. Rev. B 76 245316
[23] Shi J R, Shi X, Sun Z 2000 Thin Solid Films 366 169
[24] Rodil S E, Muhl S, Maca S 2003 Thin Solid Films 433 119
[25] Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191
[26] Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419
[27] Hu X J, Cao H Z, Zheng G Q, Cao S 2006 J. Chem. Engng. Chin. Univ. 20 932 (in Chinese) [胡晓君、曹华珍、郑国渠、曹 帅 2006 高校化学工程学报 20 932]
-
[1] Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 Electroanal. Chem. 473 179
[2] Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 Electrochem. Soc. 146 1469
[3] Xu J S, Chen Q Y, Swain G M 1998 Anal. Chem. 70 3146
[4] Swain G M 1994 Electrochem. Soc. 141 3382
[5] Declements R, Swain G M 1997 Electrochem. Soc. 144 856
[6] Fischer A E, Swain G M 2005 Electrochem. Soc. 152 B369
[7] Wei J J, He Q, Gao X H, Guo H B, Shi S Y, Lü F X, Tang W Z, Chen G C 2007 J. Syn. Crystals 36 569 (in Chinese) [魏俊 俊、贺 琦、高旭辉、郭会斌、石绍渊、吕反修、唐伟忠、陈广超 2007 人工晶体学报 36 569] 〖8] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江、石成儒、吴惠桢 2002 物理学报 51 1870]
[8] Gruen D M 1999 Ann. Rev. Mater. Sci. 29 211
[9] May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105
[10] Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879
[11] Liu C Y, Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业、刘 畅 2003 物理学报 52 1479]
[12] Sun Z, Shi J R, Tay B K 2000 Diam. Rel. Mater. 9 1979
[13] Birrell J, Gerbi J E, Auciello O, Gibson J M, Johnson J, Carlisle J A 2005 Diam. Rel. Mater. 14 86
[14] Zhou Y L, Zhi J F, Zou Y S 2008 Anal. Chem. 80 4141
[15] Ayten A Y, Swope V M, Swain G M 2008 Electrochemical Society 155 B1013
[16] Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669
[17] Ferrari A C, Robertson J 2001 Nanostruct. Carbon 1 77
[18] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
[19] Hao L, Sheldon B W, Kothari A 2006 Appl. Phys. Lett. 100 094309
[20] Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753
[21] Neto M A, Fernandes A J S, Silva R F 2007 Vacuum 81 1416
[22] Arenal R, Montagnac G, Bruno P 2007 Phys. Rev. B 76 245316
[23] Shi J R, Shi X, Sun Z 2000 Thin Solid Films 366 169
[24] Rodil S E, Muhl S, Maca S 2003 Thin Solid Films 433 119
[25] Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191
[26] Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419
[27] Hu X J, Cao H Z, Zheng G Q, Cao S 2006 J. Chem. Engng. Chin. Univ. 20 932 (in Chinese) [胡晓君、曹华珍、郑国渠、曹 帅 2006 高校化学工程学报 20 932]
Catalog
Metrics
- Abstract views: 8550
- PDF Downloads: 888
- Cited By: 0