Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable synthesis and performance of magnetic nanocomposites with core/shell structure

He Xue-Min Zhong Wei Du You-Wei

Citation:

Controllable synthesis and performance of magnetic nanocomposites with core/shell structure

He Xue-Min, Zhong Wei, Du You-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic nanocomposites with core/shell structure are an important class of functional materials, and their comprehensive properties are affected by the microstructures of materials: they are largely dependent on the controlled sysnthesis of the composite systems. In this paper, we review the research advances in the preparation, characterization and performance of core/shell-structured magnetic nanocomposites, focusing on the following systems: 1) ferrite-based permanent-magnet/soft-magnetic (or antiferromagnetic) composite nanomaterials; 2) nanocomposites comprised of the magnetic core particles and the nonmagnetic coating layers; 3) carbon-based nanocomposites obtained by the catalytic synthesis of magnetic particles; 4) nanocomposites with exchange bias effect; 5) one-dimensional nanocomposites with coaxial core/shell structure; 6) core/shell/shell structured magnetic ternary nanocomposites. The components of these composite systems include M-type permanent-magnet ferrites, 3d transition metals (and their alloys, oxides and carbides), multiferroics, nonmagnetic (such as insulator, semiconductor and organic molecule), and carbon materials. And the emphasis is placed on the analysis of thermal stability, photoluminescence performance, photoelectrocatalytic capacity, electrochemical characteristics, microwave absorption properties, magnetoresistance effect, permanent magnetic property, high-frequency soft-magnetic properties, exchange bias effect and related phenomenology for the core/shell-structured nanocomposites. Finally, the future developing trend of the magnetic nanocomposites with core/shell structure is presented, and some fundamental researches and modified applications are also proposed.
      Corresponding author: Zhong Wei, wzhong@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604160, 11774156, 11474151), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160876), the National Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. M30007), and the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY215063).
    [1]

    Beek W J E, Wienk M M, Jansen R A J 2004 Adv. Mater. 16 1009

    [2]

    Sajjad M, Morell G, Feng P 2013 ACS Appl. Mater. Interfaces 5 5051

    [3]

    Zhang H T, Wu G, Chen X H, Qiu X G 2006 Mater. Res. Bull. 41 495

    [4]

    He X M, Zhong W, Au C T, Du Y W 2013 Nanoscale Res. Lett. 8 446

    [5]

    Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393

    [6]

    Martínez-Boubeta C, Simeonidis K, Angelakeris M, Pazos-Pérez N, Giersig M, Delimitis A, Nalbandian L, Alexandrakis V, Niarchos D 2006 Phys. Rev. B 74 054430

    [7]

    Tracy J B, Bawendi M G 2006 Phys. Rev. B 74 184434

    [8]

    Johnston-Peck A C, Wang J W, Tracy J B 2009 ACS Nano 3 1077

    [9]

    Djerdj I, Arčon D, Jaglčić Z, Niederberger M 2007 J. Phys. Chem. C 111 3614

    [10]

    He X M, Zhong W, Yan S M, Au C T, L L Y, Du Y W 2014 J. Phys. D: Appl. Phys. 47 235002

    [11]

    Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. 119 6445

    [12]

    Zhang H T, Chen X H 2005 Nanotechnology 16 2288

    [13]

    Makhlouf S A, Al-Attar H, Kodama R H 2008 Solid State Commun. 145 1

    [14]

    Lu A H, Salabas E L, Schth F 2007 Angew. Chem. Int. Ed. 46 1222

    [15]

    Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H 2010 Adv. Mater. 22 2729

    [16]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [17]

    Bianco L D, Fiorani D, Testa A M, Bonetti E, Signorini L 2004 Phys. Rev. B 70 052401

    [18]

    Grzelczak M, Correa-Duarte M A, Salgueiriño-Maceira V, Rodríguez-González B, Rivas J, Liz-Marzán L M 2007 Angew. Chem. Int. Ed. 46 7026

    [19]

    Tian Z M, Yuan S L, Yin S Y, Liu L, He J H 2008 Appl. Phys. Lett. 93 222505

    [20]

    Liu W, Zhong W, Du Y W 2008 J. Nanosci. Nanotechnol. 8 2781

    [21]

    Yang N, Yang H B, Qu Y Q, Fan Y Z, Chang L X, Zhu H Y, Li M H, Zou G T 2006 Mater. Res. Bull. 41 2154

    [22]

    Liu D F, Yang S H, Lee S T 2008 J. Phys. Chem. C 112 7110

    [23]

    Morjan I, Soare I, Alexandrescu R, Gavrila-Florescu L, Morjan R E, Prodan G, Fleaca C, Sandu I, Voicu I, Dumitrache F, Popovici E 2008 Infrared Phys. Tech. 51 186

    [24]

    Zhou H P, Xu S X, Zhang D K, Chen S J, Deng J K 2017 Nanoscale 9 3196

    [25]

    Yang W J, Liu J J, Liu M Q, Zhao Z C, Song Y P, Tang X F, Luo J Y, Zeng Q G, He X 2018 Appl. Surf. Sci. 440 841

    [26]

    Choi E B, Lee J H 2015 J. Alloys Compd. 643 S231

    [27]

    Takahashi M, Higashimine K, Mohan P, Mott D M, Maenosono S 2015 CrystEngComm 17 6923

    [28]

    Dezfoolinezhad E, Ghodrati K, Badri R 2016 New J. Chem. 40 4575

    [29]

    Lee J W, Cho Y S, Amarakoon V R W 1999 J. Appl. Phys. 85 5696

    [30]

    Sugimoto M 1999 J. Am. Ceram. Soc. 82 269

    [31]

    Fang Q Q, Zhong W, Du Y W 1999 Chin. Phys. Lett. 16 285

    [32]

    Fang Q Q, Zhong W, Du Y W 1999 Acta Phys. Sin. 48 1170 (in Chinese) [方庆清, 钟伟, 都有为 1999 物理学报 48 1170]

    [33]

    Liu X S, Zhong W, Gu B X, Du Y W 2002 J. Appl. Phys. 92 1028

    [34]

    Liu X S, Zhong W, Yang S, Jiang H Y, Gu B X, Du Y W 2002 Acta Phys. Sin. 51 1128 (in Chinese) [刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为 2002 物理学报 51 1128]

    [35]

    Liu X S, Gu B X, Zhong W, Jiang H Y, Du Y W 2003 Appl. Phys. A 77 673

    [36]

    Zhong W, Liu W, Au C T, Du Y W 2006 Nanotechnology 17 250

    [37]

    Jiang H Y, Zhong W, Tang N J, Liu X S, Du Y W 2003 Chin. Phys. Lett. 20 1855

    [38]

    Tang N J, Jiang H Y, Zhong W, Wu X L, Zou W Q, Du Y W 2006 J. Alloys Compd. 419 145

    [39]

    Tang N J, Zhong W, Wu X L, Jiang H Y, Liu W, Du Y W 2005 Mater. Lett. 59 1723

    [40]

    Tang N J, Zhong W, Liu W, Jiang H Y, Wu X L, Du Y W 2004 Nanotechnology 15 1756

    [41]

    Jiang H Y, Zhong W, Wu X L, Tang N J, Liu W, Du Y W 2004 J. Alloys Compd. 384 264

    [42]

    Jiang H Y, Zhong W, Tang N J, Wu X L, Liu W, Du Y W 2005 Int. J. Mod. Phys. B 19 4371

    [43]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2006 Surf. Coat. Tech. 200 5170

    [44]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2005 Eur. Phys. J. B 46 471

    [45]

    Liu W, Zhong W, Qiu L J, L L Y, Du Y W 2006 Eur. Phys. J. B 51 501

    [46]

    Jiang H E, Liu Y, Luo W F, Wang Y J, Tang X L, Dou W, Cui Y M, Liu W S 2018 Anal. Chim. Acta 1014 91

    [47]

    Chae H S, Kim S D, Piao S H, Choi H J 2016 Colloid Polym. Sci. 294 647

    [48]

    Roto R, Yusran Y, Kuncaka A 2016 Appl. Surf. Sci. 377 30

    [49]

    Jin C Q, Zhong W, Qi X S, Song H A, Au C T, Tang S L, Du Y W 2008 J. Appl. Phys. 103 07D520

    [50]

    Yang Z X, Zhong W, Au C T, Du X, Song H A, Qi X S, Ye X J, Xu M H, Du Y W 2009 J. Phys. Chem. C 113 21269

    [51]

    Madhumitha A, Preethi V, Kanmani S 2018 Int. J. Hydrogen Energ. 43 3946

    [52]

    Neris A M, Schreiner W H, Salvador C, Silva U C, Chesman C, Longo E, Santos I M G 2018 Mat. Sci. Eng. B 229 218

    [53]

    Li L, Mak K Y, Leung C W, Chan K Y, Chan W K, Zhong W, Pong P W T 2013 Microelectron. Eng. 110 329

    [54]

    Wang S, Yue F J, Wu D, Zhang F M, Zhong W, Du Y W 2009 Appl. Phys. Lett. 94 012507

    [55]

    Li S D, Bi H, Fang J L, Zhong W, Du Y W 2004 Chin. Phys. Lett. 21 737

    [56]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [57]

    Qi X S, Xu J L, Zhong W, Au C T, Du Y W 2014 Diam. Relat. Mater. 45 12

    [58]

    Qi X S, Xu J L, Hu Q, Zhong W, Du Y W 2015 Mat. Sci. Eng. B 198 108

    [59]

    Qi X S, Zhong W, Deng C Y, Au C T, Du Y W 2013 Mater. Lett. 107 374

    [60]

    Qi X S, Xu J L, Zhong W, Du Y W 2015 Mater. Res. Bull. 67 162

    [61]

    Qi X S, Hu Q, Xu J L, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Mat. Sci. Eng. B 211 53

    [62]

    Tang N J, Zhong W, Gedanken A, Du Y W 2006 J. Phys. Chem. B 110 11772

    [63]

    Qi X S, Hu Q, Xu J L, Xie R, Jiang Y, Zhong W, Du Y W 2016 RSC Adv. 6 11382

    [64]

    Qi X S, Hu Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Sci. Rep. 6 37972

    [65]

    Qi X S, Xu M H, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Du Y W 2009 J. Phys. Chem. C 113 2267

    [66]

    Tang N J, Wen J F, Zhang Y, Liu F X, Lin K, Du Y W 2010 ACS Nano 4 241

    [67]

    Tang N J, Kuo W, Jeng C, Wang L Y, Lin K, Du Y W 2010 ACS Nano 4 781

    [68]

    Xu M H, Zhong W, Wang Z H, Au C T, Du Y W 2013 Physica E 52 14

    [69]

    Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W 2010 J. Alloys Compd. 495 200

    [70]

    Xu M H, Zhong W, Au C T, L L Y, Du Y W 2011 J. Mater. Res. 26 3058

    [71]

    Qi X S, Yang Y, Zhong W, Qin C, Deng Y, Au C T, Du Y W 2010 Carbon 48 3512

    [72]

    Qi X S, Zhong W, Deng Y, Au C T, Du Y W 2009 J. Phys. Chem. C 113 15934

    [73]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [74]

    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65

    [75]

    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature 423 850

    [76]

    Feygenson M, Yiu Y, Kou A, Kim K S, Aronson M C 2010 Phys. Rev. B 81 195445

    [77]

    Néel L 1961 Compt. Rend. 252 4075

    [78]

    Thota S, Kumar J 2007 J. Phys. Chem. Solids 68 1951

    [79]

    Winkler E, Zysler R D, Mansilla M V, Fiorani D 2005 Phys. Rev. B 72 132409

    [80]

    Shi H G, He X M 2012 J. Phys. Chem. Solids 73 646

    [81]

    He X M, Shi H G 2011 Mater. Res. Bull. 46 1692

    [82]

    He X M, Song X Y, Qiao W, Li Z W, Zhang X, Yan S M, Zhong W, Du Y W 2015 J. Phys. Chem. C 119 9550

    [83]

    He X M, Zhong W, Yan S M, Liu C, Shi H G, Au C T, Du Y W 2014 J. Phys. Chem. C 118 13898

    [84]

    He X M, Zhong W, Du Y W 2015 J. Appl. Phys. 117 043905

    [85]

    He X M, Li Z W, Zhang X, Qiao W, Song X Y, Yan S M, Zhong W, Du Y W 2015 RSC Adv. 5 69948

    [86]

    Inderhees S E, Borchers J A, Green K S, Kim M S, Sun K, Strycker G L, Aronson M C 2008 Phys. Rev. Lett. 101 117202

    [87]

    Chandra S, Khurshid H, Phan M H, Srikanth H 2012 Appl. Phys. Lett. 101 232405

    [88]

    Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M 2005 J. Phys. Chem. B 109 13403

    [89]

    Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009 J. Phys. Chem. C 113 14609

    [90]

    Luo S R, Chai F, Wang T T, Li L, Zhang L Y, Wang C G, Su Z M 2013 RSC Adv. 3 12671

    [91]

    Lee I S, Lee N, Park J, Kim B H, Yi Y W, Kim T, Kim T K, Lee I H, Paik S R, Hyeon T 2006 J. Am. Chem. Soc. 128 10658

    [92]

    Querejeta-Fernández A, Parras M, Varela A, del Monte F, García-Hernández M, González-Calbet J M 2010 Chem. Mater. 22 6529

    [93]

    Tracy J B, Weiss D N, Dinega D P, Bawendi M G 2005 Phys. Rev. B 72 064404

    [94]

    Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925

    [95]

    Li Z W, He X M, Yan S M, Song X Y, Qiao W, Zhang X, Zhong W, Du Y W 2016 Acta Phys. Sin. 65 147101 (in Chinese) [李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为 2016 物理学报 65 147101]

    [96]

    Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414

    [97]

    Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett. 12 246

    [98]

    Sharma S K, Vargas J M, Pirota K R, Kumar S, Lee C G, Knobel M 2011 J. Alloys Compd. 509 6414

    [99]

    Liu C, Cui J G, He X M, Shi H G 2014 J. Nnaopart. Res. 16 2320

    [100]

    Golosovsky I V, Salazar-Alvarez G, López-Ortega A, González M A, Sort J, Estrader M, Suriñach S, Baró M D, Nogués J 2009 Phys. Rev. Lett. 102 247201

    [101]

    López-Ortega A, Tobia D, Winkler E, Golosovsky I V, Salazar-Alvarez G, Estradé S, Estrader M, Sort J, González M A, Suriñach S, Arbiol J, Peiró F, Zysler R D, Baró M D, Nogués J 2010 J. Am. Chem. Soc. 132 9398

    [102]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 Phys. Rev. B 77 024403

    [103]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 J. Phys. D: Appl. Phys. 41 134007

    [104]

    Salazar-Alvarez G, Sort J, Suriñach S, Baró M D, Nogués J 2007 J. Am. Chem. Soc. 129 9102

    [105]

    Roth W L 1958 Phys. Rev. 110 1333

    [106]

    Rödl C, Fuchs F, Furthmller J, Bechastedt F 2009 Phys. Rev. B 79 235114

    [107]

    Dimitriadis V, Kechrakos D, Chubykalo-Fesenko O, Tsiantos V 2015 Phys. Rev. B 92 064420

    [108]

    Shcherbakov V P, Fabian K, McEnroe S A 2009 Phys. Rev. B 80 174419

    [109]

    Proenca M P, Ventura J, Sousa C T, Vazquez M, Araujo J P 2013 Phys. Rev. B 87 134404

    [110]

    Maurer T, Zighem F, Ott F, Chaboussant G, André G 2009 Phys. Rev. B 80 064427

    [111]

    Salazar-Alvarez G, Geshev J, Agramunt-Puig S, Navau C, Sanchez A, Sort J, Nogués J 2016 ACS Appl. Mater. Interfaces 8 22477

    [112]

    Lo C C, Huang C C, Liu C M, Chen C, Kuo C Y, Lin H J, Tseng Y C 2011 J. Magn. Magn. Mater. 323 1950

    [113]

    Hsu H C, Lo C C, Tseng Y C 2012 J. Appl. Phys. 111 063919

    [114]

    Salgueiriño-Maceira V, Correa-Duarte M A, Bañobre-López M, Grzelczak M, Farle M, Liz-Marzán L M, Rivas J 2008 Adv. Funct. Mater. 18 616

    [115]

    Irfan M, Wang C J, Khan U, Li W J, Zhang X M, Kong W J, Liu P, Wan C H, Liu Y W, Han X F 2017 Nanoscale 9 5694

    [116]

    Khan U, Li W J, Adeela N, Irfan M, Javed K, Wan C H, Riaz S, Han X F 2016 Nanoscale 8 6064

    [117]

    Lee J H, Wu J H, Lee J S, Jeon K S, Kim H R, Lee J H, Suh Y D, Kim Y K 2008 IEEE Trans. Magn. 44 3950

    [118]

    Chen Y J, Gao P, Zhu C L, Wang R X, Wang L J, Cao M S, Fang X Y 2009 J. Appl. Phys. 106 054303

    [119]

    Kazakova O, Daly B, Holmes J D 2006 Phys. Rev. B 74 184413

    [120]

    Daly B, Arnold D C, Kulkarni J S, Kazakova O, Shaw M T, Nikitenko S, Erts D, Morris M A, Holmes J D 2006 Small 2 1299

    [121]

    Chong Y T, Görlitz D, Martens S, Yau M Y E, Allende S, Bachmann J, Nielsch K 2010 Adv. Mater. 22 2435

    [122]

    Khan U, Irfan M, Li W J, Adeela N, Liu P, Zhang Q T, Han X F 2016 Nanoscale 8 14956

    [123]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Zhai G J, Han X F 2016 Nanotechnology 27 045708

    [124]

    Shi D W, Javed K, Ali S S, Chen J Y, Li P S, Zhao Y G, Han X F 2014 Nanoscale 6 7215

    [125]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Liu Y, Zhao Y G, Zhai G J, Han X F 2015 Nanoscale 7 13398

    [126]

    Fu B, Lu R E, Gao K, Yang Y D, Wang Y P 2015 EPL 112 27002

    [127]

    Park S H, Lee W J 2015 RSC Adv. 5 23548

    [128]

    Yuan C Z, Zhang L H, Zhu S Q, Cao H, Lin J D, Hou L R 2015 Nanotechnology 26 145401

    [129]

    Zhan L, Chen H B, Fang J Q, Wang S Q, Ding L X, Li Z, Ashman P J, Wang H H 2016 Electrochim. Acta 209 192

    [130]

    Zhang Q C, Xu W W, Sun J, Pan Z H, Zhao J X, Wang X N, Zhang J, Man P, Guo J B, Zhou Z Y, He B, Zhang Z X, Li Q W, Zhang Y G, Xu L, Yao Y G 2017 Nano Lett. 17 7552

    [131]

    Chiscan O, Dumitru I, Tura V, Chiriac H, Stancu A 2011 IEEE Trans. Magn. 47 4511

    [132]

    Ai Z H, Wang Y A, Xiao M, Zhang L Z, Qiu J R 2008 J. Phys. Chem. C 112 9847

    [133]

    Zhan S H, Zhu D D, Ren G Y, Shen Z Q, Qiu M Y, Yang S S, Yu H B, Li Y 2014 ACS Appl. Mater. Interfaces 6 16841

    [134]

    Tang N J, Chen W, Zhong W, Jiang H Y, Huang S L, Du Y W 2006 Carbon 44 423

    [135]

    Tang N J, Zhong W, Gedanken A, Du Y W 2007 Solid State Comm. 142 265

    [136]

    Tang N J, L L Y, Zhong W, Au C T, Du Y W 2009 Sci. China Ser. G 52 31

    [137]

    Wei T, Jin C Q, Zhong W, Liu J M 2007 Appl. Phys. Lett. 91 222907

    [138]

    Qi X S, Deng Y, Zhong W, Yang Y, Qin C, Au C T, Du Y W 2010 J. Phys. Chem. C 114 808

    [139]

    Yang E Q, Qi X S, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2018 Appl. Surf. Sci. 441 780

    [140]

    Qi X S, Yang E Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2017 Sci. Rep. 7 9851

    [141]

    Zhong M J, He Z M, Shen W X, Zhang Z M, Zhang J H, Ma H L 2005 J. Mater. Sci. Eng. 23 521 (in Chinese) [钟敏建, 何正明, 沈伟星, 张正明, 张建华, 马洪良 2005 材料科学与工程学报 23 521]

    [142]

    Yang C, Zhao H B, Hou Y L, Ma D 2012 J. Am. Chem. Soc. 134 15814

    [143]

    Yu J, Yang C, Li J D S, Ding Y C, Zhang L, Yousaf M Z, Lin J, Pang R, Wei L B, Xu L L, Sheng F G, Li C H, Li G J, Zhao L Y, Hou Y L 2014 Adv. Mater. 26 4114

    [144]

    Yang C, Zhao B, Gao R, Yao S Y, Zhai P, Li S W, Yu J, Hou Y L, Ma D 2017 ACS Catal. 7 5661

    [145]

    Hu E L, Yu X Y, Chen F, Wu Y D, Hu Y, Lou X W 2018 Adv. Energy Mater. 8 1702476

  • [1]

    Beek W J E, Wienk M M, Jansen R A J 2004 Adv. Mater. 16 1009

    [2]

    Sajjad M, Morell G, Feng P 2013 ACS Appl. Mater. Interfaces 5 5051

    [3]

    Zhang H T, Wu G, Chen X H, Qiu X G 2006 Mater. Res. Bull. 41 495

    [4]

    He X M, Zhong W, Au C T, Du Y W 2013 Nanoscale Res. Lett. 8 446

    [5]

    Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393

    [6]

    Martínez-Boubeta C, Simeonidis K, Angelakeris M, Pazos-Pérez N, Giersig M, Delimitis A, Nalbandian L, Alexandrakis V, Niarchos D 2006 Phys. Rev. B 74 054430

    [7]

    Tracy J B, Bawendi M G 2006 Phys. Rev. B 74 184434

    [8]

    Johnston-Peck A C, Wang J W, Tracy J B 2009 ACS Nano 3 1077

    [9]

    Djerdj I, Arčon D, Jaglčić Z, Niederberger M 2007 J. Phys. Chem. C 111 3614

    [10]

    He X M, Zhong W, Yan S M, Au C T, L L Y, Du Y W 2014 J. Phys. D: Appl. Phys. 47 235002

    [11]

    Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. 119 6445

    [12]

    Zhang H T, Chen X H 2005 Nanotechnology 16 2288

    [13]

    Makhlouf S A, Al-Attar H, Kodama R H 2008 Solid State Commun. 145 1

    [14]

    Lu A H, Salabas E L, Schth F 2007 Angew. Chem. Int. Ed. 46 1222

    [15]

    Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H 2010 Adv. Mater. 22 2729

    [16]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [17]

    Bianco L D, Fiorani D, Testa A M, Bonetti E, Signorini L 2004 Phys. Rev. B 70 052401

    [18]

    Grzelczak M, Correa-Duarte M A, Salgueiriño-Maceira V, Rodríguez-González B, Rivas J, Liz-Marzán L M 2007 Angew. Chem. Int. Ed. 46 7026

    [19]

    Tian Z M, Yuan S L, Yin S Y, Liu L, He J H 2008 Appl. Phys. Lett. 93 222505

    [20]

    Liu W, Zhong W, Du Y W 2008 J. Nanosci. Nanotechnol. 8 2781

    [21]

    Yang N, Yang H B, Qu Y Q, Fan Y Z, Chang L X, Zhu H Y, Li M H, Zou G T 2006 Mater. Res. Bull. 41 2154

    [22]

    Liu D F, Yang S H, Lee S T 2008 J. Phys. Chem. C 112 7110

    [23]

    Morjan I, Soare I, Alexandrescu R, Gavrila-Florescu L, Morjan R E, Prodan G, Fleaca C, Sandu I, Voicu I, Dumitrache F, Popovici E 2008 Infrared Phys. Tech. 51 186

    [24]

    Zhou H P, Xu S X, Zhang D K, Chen S J, Deng J K 2017 Nanoscale 9 3196

    [25]

    Yang W J, Liu J J, Liu M Q, Zhao Z C, Song Y P, Tang X F, Luo J Y, Zeng Q G, He X 2018 Appl. Surf. Sci. 440 841

    [26]

    Choi E B, Lee J H 2015 J. Alloys Compd. 643 S231

    [27]

    Takahashi M, Higashimine K, Mohan P, Mott D M, Maenosono S 2015 CrystEngComm 17 6923

    [28]

    Dezfoolinezhad E, Ghodrati K, Badri R 2016 New J. Chem. 40 4575

    [29]

    Lee J W, Cho Y S, Amarakoon V R W 1999 J. Appl. Phys. 85 5696

    [30]

    Sugimoto M 1999 J. Am. Ceram. Soc. 82 269

    [31]

    Fang Q Q, Zhong W, Du Y W 1999 Chin. Phys. Lett. 16 285

    [32]

    Fang Q Q, Zhong W, Du Y W 1999 Acta Phys. Sin. 48 1170 (in Chinese) [方庆清, 钟伟, 都有为 1999 物理学报 48 1170]

    [33]

    Liu X S, Zhong W, Gu B X, Du Y W 2002 J. Appl. Phys. 92 1028

    [34]

    Liu X S, Zhong W, Yang S, Jiang H Y, Gu B X, Du Y W 2002 Acta Phys. Sin. 51 1128 (in Chinese) [刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为 2002 物理学报 51 1128]

    [35]

    Liu X S, Gu B X, Zhong W, Jiang H Y, Du Y W 2003 Appl. Phys. A 77 673

    [36]

    Zhong W, Liu W, Au C T, Du Y W 2006 Nanotechnology 17 250

    [37]

    Jiang H Y, Zhong W, Tang N J, Liu X S, Du Y W 2003 Chin. Phys. Lett. 20 1855

    [38]

    Tang N J, Jiang H Y, Zhong W, Wu X L, Zou W Q, Du Y W 2006 J. Alloys Compd. 419 145

    [39]

    Tang N J, Zhong W, Wu X L, Jiang H Y, Liu W, Du Y W 2005 Mater. Lett. 59 1723

    [40]

    Tang N J, Zhong W, Liu W, Jiang H Y, Wu X L, Du Y W 2004 Nanotechnology 15 1756

    [41]

    Jiang H Y, Zhong W, Wu X L, Tang N J, Liu W, Du Y W 2004 J. Alloys Compd. 384 264

    [42]

    Jiang H Y, Zhong W, Tang N J, Wu X L, Liu W, Du Y W 2005 Int. J. Mod. Phys. B 19 4371

    [43]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2006 Surf. Coat. Tech. 200 5170

    [44]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2005 Eur. Phys. J. B 46 471

    [45]

    Liu W, Zhong W, Qiu L J, L L Y, Du Y W 2006 Eur. Phys. J. B 51 501

    [46]

    Jiang H E, Liu Y, Luo W F, Wang Y J, Tang X L, Dou W, Cui Y M, Liu W S 2018 Anal. Chim. Acta 1014 91

    [47]

    Chae H S, Kim S D, Piao S H, Choi H J 2016 Colloid Polym. Sci. 294 647

    [48]

    Roto R, Yusran Y, Kuncaka A 2016 Appl. Surf. Sci. 377 30

    [49]

    Jin C Q, Zhong W, Qi X S, Song H A, Au C T, Tang S L, Du Y W 2008 J. Appl. Phys. 103 07D520

    [50]

    Yang Z X, Zhong W, Au C T, Du X, Song H A, Qi X S, Ye X J, Xu M H, Du Y W 2009 J. Phys. Chem. C 113 21269

    [51]

    Madhumitha A, Preethi V, Kanmani S 2018 Int. J. Hydrogen Energ. 43 3946

    [52]

    Neris A M, Schreiner W H, Salvador C, Silva U C, Chesman C, Longo E, Santos I M G 2018 Mat. Sci. Eng. B 229 218

    [53]

    Li L, Mak K Y, Leung C W, Chan K Y, Chan W K, Zhong W, Pong P W T 2013 Microelectron. Eng. 110 329

    [54]

    Wang S, Yue F J, Wu D, Zhang F M, Zhong W, Du Y W 2009 Appl. Phys. Lett. 94 012507

    [55]

    Li S D, Bi H, Fang J L, Zhong W, Du Y W 2004 Chin. Phys. Lett. 21 737

    [56]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [57]

    Qi X S, Xu J L, Zhong W, Au C T, Du Y W 2014 Diam. Relat. Mater. 45 12

    [58]

    Qi X S, Xu J L, Hu Q, Zhong W, Du Y W 2015 Mat. Sci. Eng. B 198 108

    [59]

    Qi X S, Zhong W, Deng C Y, Au C T, Du Y W 2013 Mater. Lett. 107 374

    [60]

    Qi X S, Xu J L, Zhong W, Du Y W 2015 Mater. Res. Bull. 67 162

    [61]

    Qi X S, Hu Q, Xu J L, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Mat. Sci. Eng. B 211 53

    [62]

    Tang N J, Zhong W, Gedanken A, Du Y W 2006 J. Phys. Chem. B 110 11772

    [63]

    Qi X S, Hu Q, Xu J L, Xie R, Jiang Y, Zhong W, Du Y W 2016 RSC Adv. 6 11382

    [64]

    Qi X S, Hu Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Sci. Rep. 6 37972

    [65]

    Qi X S, Xu M H, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Du Y W 2009 J. Phys. Chem. C 113 2267

    [66]

    Tang N J, Wen J F, Zhang Y, Liu F X, Lin K, Du Y W 2010 ACS Nano 4 241

    [67]

    Tang N J, Kuo W, Jeng C, Wang L Y, Lin K, Du Y W 2010 ACS Nano 4 781

    [68]

    Xu M H, Zhong W, Wang Z H, Au C T, Du Y W 2013 Physica E 52 14

    [69]

    Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W 2010 J. Alloys Compd. 495 200

    [70]

    Xu M H, Zhong W, Au C T, L L Y, Du Y W 2011 J. Mater. Res. 26 3058

    [71]

    Qi X S, Yang Y, Zhong W, Qin C, Deng Y, Au C T, Du Y W 2010 Carbon 48 3512

    [72]

    Qi X S, Zhong W, Deng Y, Au C T, Du Y W 2009 J. Phys. Chem. C 113 15934

    [73]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [74]

    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65

    [75]

    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature 423 850

    [76]

    Feygenson M, Yiu Y, Kou A, Kim K S, Aronson M C 2010 Phys. Rev. B 81 195445

    [77]

    Néel L 1961 Compt. Rend. 252 4075

    [78]

    Thota S, Kumar J 2007 J. Phys. Chem. Solids 68 1951

    [79]

    Winkler E, Zysler R D, Mansilla M V, Fiorani D 2005 Phys. Rev. B 72 132409

    [80]

    Shi H G, He X M 2012 J. Phys. Chem. Solids 73 646

    [81]

    He X M, Shi H G 2011 Mater. Res. Bull. 46 1692

    [82]

    He X M, Song X Y, Qiao W, Li Z W, Zhang X, Yan S M, Zhong W, Du Y W 2015 J. Phys. Chem. C 119 9550

    [83]

    He X M, Zhong W, Yan S M, Liu C, Shi H G, Au C T, Du Y W 2014 J. Phys. Chem. C 118 13898

    [84]

    He X M, Zhong W, Du Y W 2015 J. Appl. Phys. 117 043905

    [85]

    He X M, Li Z W, Zhang X, Qiao W, Song X Y, Yan S M, Zhong W, Du Y W 2015 RSC Adv. 5 69948

    [86]

    Inderhees S E, Borchers J A, Green K S, Kim M S, Sun K, Strycker G L, Aronson M C 2008 Phys. Rev. Lett. 101 117202

    [87]

    Chandra S, Khurshid H, Phan M H, Srikanth H 2012 Appl. Phys. Lett. 101 232405

    [88]

    Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M 2005 J. Phys. Chem. B 109 13403

    [89]

    Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009 J. Phys. Chem. C 113 14609

    [90]

    Luo S R, Chai F, Wang T T, Li L, Zhang L Y, Wang C G, Su Z M 2013 RSC Adv. 3 12671

    [91]

    Lee I S, Lee N, Park J, Kim B H, Yi Y W, Kim T, Kim T K, Lee I H, Paik S R, Hyeon T 2006 J. Am. Chem. Soc. 128 10658

    [92]

    Querejeta-Fernández A, Parras M, Varela A, del Monte F, García-Hernández M, González-Calbet J M 2010 Chem. Mater. 22 6529

    [93]

    Tracy J B, Weiss D N, Dinega D P, Bawendi M G 2005 Phys. Rev. B 72 064404

    [94]

    Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925

    [95]

    Li Z W, He X M, Yan S M, Song X Y, Qiao W, Zhang X, Zhong W, Du Y W 2016 Acta Phys. Sin. 65 147101 (in Chinese) [李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为 2016 物理学报 65 147101]

    [96]

    Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414

    [97]

    Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett. 12 246

    [98]

    Sharma S K, Vargas J M, Pirota K R, Kumar S, Lee C G, Knobel M 2011 J. Alloys Compd. 509 6414

    [99]

    Liu C, Cui J G, He X M, Shi H G 2014 J. Nnaopart. Res. 16 2320

    [100]

    Golosovsky I V, Salazar-Alvarez G, López-Ortega A, González M A, Sort J, Estrader M, Suriñach S, Baró M D, Nogués J 2009 Phys. Rev. Lett. 102 247201

    [101]

    López-Ortega A, Tobia D, Winkler E, Golosovsky I V, Salazar-Alvarez G, Estradé S, Estrader M, Sort J, González M A, Suriñach S, Arbiol J, Peiró F, Zysler R D, Baró M D, Nogués J 2010 J. Am. Chem. Soc. 132 9398

    [102]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 Phys. Rev. B 77 024403

    [103]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 J. Phys. D: Appl. Phys. 41 134007

    [104]

    Salazar-Alvarez G, Sort J, Suriñach S, Baró M D, Nogués J 2007 J. Am. Chem. Soc. 129 9102

    [105]

    Roth W L 1958 Phys. Rev. 110 1333

    [106]

    Rödl C, Fuchs F, Furthmller J, Bechastedt F 2009 Phys. Rev. B 79 235114

    [107]

    Dimitriadis V, Kechrakos D, Chubykalo-Fesenko O, Tsiantos V 2015 Phys. Rev. B 92 064420

    [108]

    Shcherbakov V P, Fabian K, McEnroe S A 2009 Phys. Rev. B 80 174419

    [109]

    Proenca M P, Ventura J, Sousa C T, Vazquez M, Araujo J P 2013 Phys. Rev. B 87 134404

    [110]

    Maurer T, Zighem F, Ott F, Chaboussant G, André G 2009 Phys. Rev. B 80 064427

    [111]

    Salazar-Alvarez G, Geshev J, Agramunt-Puig S, Navau C, Sanchez A, Sort J, Nogués J 2016 ACS Appl. Mater. Interfaces 8 22477

    [112]

    Lo C C, Huang C C, Liu C M, Chen C, Kuo C Y, Lin H J, Tseng Y C 2011 J. Magn. Magn. Mater. 323 1950

    [113]

    Hsu H C, Lo C C, Tseng Y C 2012 J. Appl. Phys. 111 063919

    [114]

    Salgueiriño-Maceira V, Correa-Duarte M A, Bañobre-López M, Grzelczak M, Farle M, Liz-Marzán L M, Rivas J 2008 Adv. Funct. Mater. 18 616

    [115]

    Irfan M, Wang C J, Khan U, Li W J, Zhang X M, Kong W J, Liu P, Wan C H, Liu Y W, Han X F 2017 Nanoscale 9 5694

    [116]

    Khan U, Li W J, Adeela N, Irfan M, Javed K, Wan C H, Riaz S, Han X F 2016 Nanoscale 8 6064

    [117]

    Lee J H, Wu J H, Lee J S, Jeon K S, Kim H R, Lee J H, Suh Y D, Kim Y K 2008 IEEE Trans. Magn. 44 3950

    [118]

    Chen Y J, Gao P, Zhu C L, Wang R X, Wang L J, Cao M S, Fang X Y 2009 J. Appl. Phys. 106 054303

    [119]

    Kazakova O, Daly B, Holmes J D 2006 Phys. Rev. B 74 184413

    [120]

    Daly B, Arnold D C, Kulkarni J S, Kazakova O, Shaw M T, Nikitenko S, Erts D, Morris M A, Holmes J D 2006 Small 2 1299

    [121]

    Chong Y T, Görlitz D, Martens S, Yau M Y E, Allende S, Bachmann J, Nielsch K 2010 Adv. Mater. 22 2435

    [122]

    Khan U, Irfan M, Li W J, Adeela N, Liu P, Zhang Q T, Han X F 2016 Nanoscale 8 14956

    [123]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Zhai G J, Han X F 2016 Nanotechnology 27 045708

    [124]

    Shi D W, Javed K, Ali S S, Chen J Y, Li P S, Zhao Y G, Han X F 2014 Nanoscale 6 7215

    [125]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Liu Y, Zhao Y G, Zhai G J, Han X F 2015 Nanoscale 7 13398

    [126]

    Fu B, Lu R E, Gao K, Yang Y D, Wang Y P 2015 EPL 112 27002

    [127]

    Park S H, Lee W J 2015 RSC Adv. 5 23548

    [128]

    Yuan C Z, Zhang L H, Zhu S Q, Cao H, Lin J D, Hou L R 2015 Nanotechnology 26 145401

    [129]

    Zhan L, Chen H B, Fang J Q, Wang S Q, Ding L X, Li Z, Ashman P J, Wang H H 2016 Electrochim. Acta 209 192

    [130]

    Zhang Q C, Xu W W, Sun J, Pan Z H, Zhao J X, Wang X N, Zhang J, Man P, Guo J B, Zhou Z Y, He B, Zhang Z X, Li Q W, Zhang Y G, Xu L, Yao Y G 2017 Nano Lett. 17 7552

    [131]

    Chiscan O, Dumitru I, Tura V, Chiriac H, Stancu A 2011 IEEE Trans. Magn. 47 4511

    [132]

    Ai Z H, Wang Y A, Xiao M, Zhang L Z, Qiu J R 2008 J. Phys. Chem. C 112 9847

    [133]

    Zhan S H, Zhu D D, Ren G Y, Shen Z Q, Qiu M Y, Yang S S, Yu H B, Li Y 2014 ACS Appl. Mater. Interfaces 6 16841

    [134]

    Tang N J, Chen W, Zhong W, Jiang H Y, Huang S L, Du Y W 2006 Carbon 44 423

    [135]

    Tang N J, Zhong W, Gedanken A, Du Y W 2007 Solid State Comm. 142 265

    [136]

    Tang N J, L L Y, Zhong W, Au C T, Du Y W 2009 Sci. China Ser. G 52 31

    [137]

    Wei T, Jin C Q, Zhong W, Liu J M 2007 Appl. Phys. Lett. 91 222907

    [138]

    Qi X S, Deng Y, Zhong W, Yang Y, Qin C, Au C T, Du Y W 2010 J. Phys. Chem. C 114 808

    [139]

    Yang E Q, Qi X S, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2018 Appl. Surf. Sci. 441 780

    [140]

    Qi X S, Yang E Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2017 Sci. Rep. 7 9851

    [141]

    Zhong M J, He Z M, Shen W X, Zhang Z M, Zhang J H, Ma H L 2005 J. Mater. Sci. Eng. 23 521 (in Chinese) [钟敏建, 何正明, 沈伟星, 张正明, 张建华, 马洪良 2005 材料科学与工程学报 23 521]

    [142]

    Yang C, Zhao H B, Hou Y L, Ma D 2012 J. Am. Chem. Soc. 134 15814

    [143]

    Yu J, Yang C, Li J D S, Ding Y C, Zhang L, Yousaf M Z, Lin J, Pang R, Wei L B, Xu L L, Sheng F G, Li C H, Li G J, Zhao L Y, Hou Y L 2014 Adv. Mater. 26 4114

    [144]

    Yang C, Zhao B, Gao R, Yao S Y, Zhai P, Li S W, Yu J, Hou Y L, Ma D 2017 ACS Catal. 7 5661

    [145]

    Hu E L, Yu X Y, Chen F, Wu Y D, Hu Y, Lou X W 2018 Adv. Energy Mater. 8 1702476

  • [1] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [2] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [4] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [5] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [6] Li Zhi-Wen, He Xue-Min, Yan Shi-Ming, Song Xue-Yin, Qiao Wen, Zhang Xing, Zhong Wei, Du You-Wei. Synthesis, microstructure, and magnetic properties of -Fe2O3/NiO core/shell nanoflowers. Acta Physica Sinica, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [7] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [8] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [9] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [10] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [11] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [12] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [13] Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu. Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability. Acta Physica Sinica, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [14] Luo Yi, Zhao Guo-Ping, Yang Hai-Tao, Song Ning-Ning, Ren Xiao, Ding Hao-Feng, Cheng Zhao-Hua. Exchange bias effect in single crystalline phase MnO nanoparticles. Acta Physica Sinica, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [15] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [16] Pan Jin-Ping, Hu Xiao-Jun, Lu Li-Ping, Yin Chi. Influence of annealing on the microstructure and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [17] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [18] Pan Jing, Tao Yong-Chun, Hu Jing-Guo. The exchange bias in ferromagnetic/antiferro-magnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [19] Teng Jiao, Cai Jian-Wang, Xiong Xiao-Tao, Lai Wu-Yan, Zhu Feng-Wu. The establishment and thermal stability of exchange bias in NiFe/FeMn bilayers. Acta Physica Sinica, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  9833
  • PDF Downloads:  452
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2018
  • Accepted Date:  27 August 2018
  • Published Online:  20 November 2019

/

返回文章
返回