Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures

Zhu Zhao-Zhao Feng Zheng Cai Jian-Wang

Citation:

Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures

Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang
PDF
HTML
Get Citation
  • Spintronic terahertz (THz) emitter has more advantages such as lower cost, broader spectrum and easier operation than the commercial THz emitters, and thus has become a focus of research towards the next-generation THz source. However, in such a spintronic THz emitter, an external magnetic field is technologically required to align the orientation of the magnetization, which is detrimental for practical applications. Here, a spintronic terahertz emitter based on IrMn/Fe/Pt exchange bias structure is presented. By means of ultrafast spin injection on Fe/Pt interface followed by the spin-to-charge conversion in Pt, plus the effective magnetic field originating from the IrMn/Fe interface, the THz pulse with considerable intensity can be generated in such a structure without the assistance of external field. Besides, the remanent magnetization for thin Fe layer is enhanced by inserting an ultrathin Cu layer between the IrMn surface and the Fe surface, which is beneficial to the field-free THz emission. The range of obtained dynamic THz spectrum exceeds 60 dB and the positive saturation field can reach up to ~ –10 mT by optimizing the multilayer thickness, meeting the standard for commercial application. By rotating the sample, it is found that the polarization direction of the generated THz wave circulates simultaneously and keeps perpendicular to the direction of exchange bias field in the film plane. Moreover, we design a spin valve THz emitter based on the structure of IrMn/Fe/Pt/Fe by adding a free ferromagnetic Fe layer into the exchange bias multilayers. The emitted THz pulse amplitude is larger for the antiparallel alignment of the Fe layers at zero field than for the parallel alignment or exchange bias structure. The present work shows that the spin terahertz emitter based on IrMn/Fe/Pt exchange bias structure can produce the considerable terahertz signals without external field. Furthermore, the polarization direction of the emitted THz signal can be easily manipulated by rotating the sample. Because of this series of advantages, such exchange bias heterostructures are expected to play an important role in designing the next-generation THz source.
      Corresponding author: Feng Zheng, fengzheng_mtrc@caep.cn
    • Funds: Project supported by the Science Challenge Project of China (Grant No. TZ2018003) and the National Natural Science Foundation of China (Grant No. 62027870).
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar

    [3]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [4]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [5]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Optical Mater. 6 1800965Google Scholar

    [6]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Klaui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [7]

    Wu Y, Elyasi M, Qiu X P, Chen M J, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [8]

    Yang D W, Liang J H, Zhou C, Sun L, Zheng R, Luo S N, Wu Y Z, Qi J B 2016 Adv. Optical Mater. 4 1944Google Scholar

    [9]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406(R)

    [10]

    Schneider R, Fix M, Heming R, de Vasconcellos S M, Albrecht M, Bratschitsch R 2018 Acs Photonics 5 3936Google Scholar

    [11]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Klaui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [12]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [13]

    Li J G, Jin Z M, Song B J, Zhang S N, Guo C Y, Wan C H, Han X F, Cheng Z X, Zhang C, Lin X, Ma G H, Yao J Q 2019 Jpn. J. Appl. Phys. 58 090913Google Scholar

    [14]

    Nogues J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [15]

    Gokemeijer N J, Ambrose T, Chien C L 1997 Phys. Rev. Lett. 79 4270Google Scholar

    [16]

    Liu T, Zhu T, Cai J W, Sun L 2011 J. Appl. Phys. 109 094504Google Scholar

    [17]

    Zhang H, Feng Z, Zhang J, Bai H, Yang H, Cai J, Zhao W, Tan W, Hu F, Shen B, Sun J 2020 Phys. Rev. B 102 024435Google Scholar

    [18]

    Zou L K, Zhang Y, Gu L, Cai J W, Sun L 2016 Phys. Rev. B 93 075309Google Scholar

    [19]

    Fix M, Schneider R, de Vasconcellos S M, Bratschitsch R, Albrecht M 2020 Appl. Phys. Lett. 117 132407Google Scholar

    [20]

    Zhang Q, Yang Y, Luo Z, Xu Y, Nie R, Zhang X, Wu Y 2020 Phys. Rev. Appl. 13 054016Google Scholar

  • 图 1  (a) 样品结构以及太赫兹信号激发示意图; (b) MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Fe(1.5 nm)/Pt(1.8 nm) (黑线)和MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(1.5 nm)/Pt(1.8 nm) (红线)在外场沿交换偏置方向时的磁化曲线

    Figure 1.  (a) Illustration of the layer stacking and THz excitation configuration; (b) M-H loops for the MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Fe(1.5 nm)/Pt(1.8 nm) (black line) and MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(1.5 nm)/Pt(1.8 nm) (red line) on the applied in-plane magnetic field parallel to the exchange bias direction.

    图 2  MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(2 nm)/Pt(1.8 nm)无外场下的太赫兹脉冲信号 (a); 太赫兹脉冲振幅随外场的变化关系(b); 由图(a)得到的傅里叶谱图(c)

    Figure 2.  THz emission signals of MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(2 nm)/Pt(1.8 nm) samples without external field(a); magnetic dependence of the THz amplitude (b); Fourier spectra obtained from the data in Fig.(a) (c).

    图 3  (a) tFe = 1, 1.5, 2和2.5 nm时, MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(tFe nm)/Pt(1.8 nm) 样品太赫兹脉冲振幅随着外场的变化曲线; (b) tFe = 1.5 nm时, 不同Cu和Pt厚度下其太赫兹脉冲振幅随外场的变化曲线; (c) MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(2.5 nm)/Pt(1.8 nm) 与MgO(111)/Fe(1.5 nm)/Pt(1.8 nm) 的太赫兹脉冲信号对比

    Figure 3.  (a) THz amplitude as a function magnetic field for the MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(tFe nm)/Pt(1.8 nm) samples, where tFe = 1, 1.5, 2, and 2.5 nm; (b) comparison of the magnetic dependent THz amplitude in 1.5 nm Fe with different thickness of Cu and Pt; (c) effect of 6 nm IrMn layer on THz signals.

    图 4  MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(2 nm)/Pt(1.8 nm)在$\varphi$ = 0°(a)和$\varphi$ = 90°(b)时偏振方向分别沿xy方向的太赫兹脉冲信号; (c)太赫兹脉冲偏振方向沿xy方向的分量随$\varphi$ 的变化关系, 实线代表用cos函数进行拟合的结果. (d)不同 $\varphi$ 下, 太赫兹脉冲的矢量分布示意图

    Figure 4.  THz emission signals with x-directional andy-directional polarization for the MgO(111)/Pt(1.5 nm)/IrMn(6 nm)/Cu(0.4 nm)/Fe(2 nm)/Pt(1.8 nm) sample at $ \phi $ = 0° (a) and $\varphi$ = 90° (b), respectively; (c) x-directional andy-directional polarization THz pulse amplitude as a function of $\varphi$. Solid lines in (c) are fitting curves using a cosine function; (d) distribution of THz emission signals vector at different $\varphi$.

  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar

    [3]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [4]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [5]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Optical Mater. 6 1800965Google Scholar

    [6]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Klaui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [7]

    Wu Y, Elyasi M, Qiu X P, Chen M J, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [8]

    Yang D W, Liang J H, Zhou C, Sun L, Zheng R, Luo S N, Wu Y Z, Qi J B 2016 Adv. Optical Mater. 4 1944Google Scholar

    [9]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406(R)

    [10]

    Schneider R, Fix M, Heming R, de Vasconcellos S M, Albrecht M, Bratschitsch R 2018 Acs Photonics 5 3936Google Scholar

    [11]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Klaui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [12]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [13]

    Li J G, Jin Z M, Song B J, Zhang S N, Guo C Y, Wan C H, Han X F, Cheng Z X, Zhang C, Lin X, Ma G H, Yao J Q 2019 Jpn. J. Appl. Phys. 58 090913Google Scholar

    [14]

    Nogues J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [15]

    Gokemeijer N J, Ambrose T, Chien C L 1997 Phys. Rev. Lett. 79 4270Google Scholar

    [16]

    Liu T, Zhu T, Cai J W, Sun L 2011 J. Appl. Phys. 109 094504Google Scholar

    [17]

    Zhang H, Feng Z, Zhang J, Bai H, Yang H, Cai J, Zhao W, Tan W, Hu F, Shen B, Sun J 2020 Phys. Rev. B 102 024435Google Scholar

    [18]

    Zou L K, Zhang Y, Gu L, Cai J W, Sun L 2016 Phys. Rev. B 93 075309Google Scholar

    [19]

    Fix M, Schneider R, de Vasconcellos S M, Bratschitsch R, Albrecht M 2020 Appl. Phys. Lett. 117 132407Google Scholar

    [20]

    Zhang Q, Yang Y, Luo Z, Xu Y, Nie R, Zhang X, Wu Y 2020 Phys. Rev. Appl. 13 054016Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Ji Hui-Hui, Gao Xing-Guo, Li Zhi-Lan. Dimensionality driven exchange coupling effect in cuprate-manganite superlattices. Acta Physica Sinica, 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [3] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [4] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [5] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [6] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [7] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [8] Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang. Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices. Acta Physica Sinica, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [9] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [10] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [12] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [13] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [16] Wei Ji-Zhou, Zhang Ming, Deng Hao-Liang, Chu Shang-Jie, Du Min-Yong, Yan Hui. Preparation and exchange bias effects of Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 heterostructures. Acta Physica Sinica, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [17] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [18] Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu. Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability. Acta Physica Sinica, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [19] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [20] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
Metrics
  • Abstract views:  4867
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  02 October 2021
  • Accepted Date:  18 October 2021
  • Available Online:  18 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回