-
Spintronic terahertz (THz) emitter, which is based on ultrafast spin-to-charge current conversion in ferromagnetic/nonmagnetic heterostructures, provides excellent advantages such as ultra-broadband, tunable polarization, and ultra-thin structure, thereby attracting increasing interests recently. In this review article, we first introduce the fundamental concepts of THz wave, THz spintronics and spintronic THz emitter. Next, we focus on the recent progress of spintronic THz emitter by closely looking at the performances, manipulations and applications. Performance improvement is presented based on the three fundamental processes: optical excitation, ultrafast spin transport, and THz emission. The active manipulation of polarization and spectral response, as well as the relevant applications such as ultra broadband measurements, magnetic structure detection and imaging, and THz near-field microscopy, are reviewed comprehensively. Finally, a brief summary and outlook are given.
-
Keywords:
- terahertz (THz) /
- spin current /
- ultrafast spin transport /
- magnetic heterostructure
[1] Tonouchi M 2007 Nat. Photonics 1 97Google Scholar
[2] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[3] Withayachumnankul W, Naftaly M 2014 J. Infrared Millim Terahertz Waves 35 610Google Scholar
[4] Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar
[5] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar
[6] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2010 Nat. Photonics 5 31
[7] Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar
[8] Chun S H, Shin K W, Kim H J, Jung S, Park J, Bahk Y, Park H, Kyoung J S, Choi D, Kim D 2018 Phys. Rev. Lett. 120 027202Google Scholar
[9] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar
[10] Vicario C, Ruchert C, Ardanalamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar
[11] Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar
[12] Huisman T J, Mikhaylovskiy R V, Rasing T, Kimel A V, Tsukamoto A, de Ronde B, Ma L, Fan W J, Zhou S M 2017 Phys. Rev. B 95 094418Google Scholar
[13] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar
[14] Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar
[15] Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar
[16] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar
[17] Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar
[18] Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423Google Scholar
[19] Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar
[20] Yang D W, Liang J H, Zhou C, Sun L, Zheng R E, Luo S N, Wu Y Z, Qi J B 2016 Adv. Opt. Mater. 4 1944Google Scholar
[21] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar
[22] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar
[23] Zhang S, Jin Z M, Zhu Z, Zhu W, Zhang Z, Ma G H, Yao J 2017 J. Phys. D 51 034001
[24] Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar
[25] Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar
[26] Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar
[27] Seifert T, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar
[28] Gückstock O P 2018 M. S. Thesis (Berlin: Technische Universität Berlin)
[29] Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar
[30] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar
[31] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J B 2018 Phys. Rev. Lett. 121 086801Google Scholar
[32] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar
[33] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J-X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar
[34] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar
[35] Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar
[36] Fülöp J A, Tzortzakis S, Kampfrath T 2020 Adv. Opt. Mater. 8 1900681Google Scholar
[37] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar
[38] Schneider R, Fix M, Heming R, De Vasconcellos S M, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar
[39] Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar
[40] Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar
[41] Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar
[42] Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C D, Wen L G, Zhao W S 2019 Appl. Phys. Lett. 115 221104Google Scholar
[43] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar
[44] Feng Z, Wang D C, Ding H F, Cai J W, Tan W 2019 Proceedings of The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics Lisbon, Portugal, July 23–26, 2019 p626
[45] Jin Z M, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G H 2019 Phys Status Solidi Rapid Res Lett 13 1900057Google Scholar
[46] Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2018 Adv. Opt. Mater. 7 1801608
[47] Wang B, Shan S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar
[48] Bulgarevich D S, Akamine Y, Talara M, Magusara V K, Kitahara H, Kato H, Shiihara M, Tani M, Watanabe M 2020 Sci. Rep. 10 1158Google Scholar
[49] Chen S, Feng Z, Li J, Tan W, Du L, Cai J, Ma Y, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 99Google Scholar
-
图 4 金属-介质光子晶体自旋太赫兹源[34] (a)结构示意图; (b)不同周期样品的飞秒激光吸收率与太赫兹强度随介质层SiO2厚度d的变化; (c)归一化的激光吸收率与太赫兹强度
Figure 4. Metal–dielectric photonic crystal type spintronic THz emitter[34]: (a) Schematic diagram; (b) fs laser absorbance and THz amplitude as the functions of SiO2 thickness d for different repeats; (c) normalized THz amplitude and fs laser absorbance as the functions of SiO2 thickness d for different repeats.
-
[1] Tonouchi M 2007 Nat. Photonics 1 97Google Scholar
[2] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[3] Withayachumnankul W, Naftaly M 2014 J. Infrared Millim Terahertz Waves 35 610Google Scholar
[4] Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar
[5] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar
[6] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2010 Nat. Photonics 5 31
[7] Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar
[8] Chun S H, Shin K W, Kim H J, Jung S, Park J, Bahk Y, Park H, Kyoung J S, Choi D, Kim D 2018 Phys. Rev. Lett. 120 027202Google Scholar
[9] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar
[10] Vicario C, Ruchert C, Ardanalamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar
[11] Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar
[12] Huisman T J, Mikhaylovskiy R V, Rasing T, Kimel A V, Tsukamoto A, de Ronde B, Ma L, Fan W J, Zhou S M 2017 Phys. Rev. B 95 094418Google Scholar
[13] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar
[14] Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar
[15] Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar
[16] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar
[17] Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar
[18] Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423Google Scholar
[19] Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar
[20] Yang D W, Liang J H, Zhou C, Sun L, Zheng R E, Luo S N, Wu Y Z, Qi J B 2016 Adv. Opt. Mater. 4 1944Google Scholar
[21] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar
[22] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar
[23] Zhang S, Jin Z M, Zhu Z, Zhu W, Zhang Z, Ma G H, Yao J 2017 J. Phys. D 51 034001
[24] Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar
[25] Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar
[26] Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar
[27] Seifert T, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar
[28] Gückstock O P 2018 M. S. Thesis (Berlin: Technische Universität Berlin)
[29] Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar
[30] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar
[31] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J B 2018 Phys. Rev. Lett. 121 086801Google Scholar
[32] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar
[33] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J-X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar
[34] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar
[35] Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar
[36] Fülöp J A, Tzortzakis S, Kampfrath T 2020 Adv. Opt. Mater. 8 1900681Google Scholar
[37] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar
[38] Schneider R, Fix M, Heming R, De Vasconcellos S M, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar
[39] Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar
[40] Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar
[41] Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar
[42] Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C D, Wen L G, Zhao W S 2019 Appl. Phys. Lett. 115 221104Google Scholar
[43] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar
[44] Feng Z, Wang D C, Ding H F, Cai J W, Tan W 2019 Proceedings of The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics Lisbon, Portugal, July 23–26, 2019 p626
[45] Jin Z M, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G H 2019 Phys Status Solidi Rapid Res Lett 13 1900057Google Scholar
[46] Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2018 Adv. Opt. Mater. 7 1801608
[47] Wang B, Shan S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar
[48] Bulgarevich D S, Akamine Y, Talara M, Magusara V K, Kitahara H, Kato H, Shiihara M, Tani M, Watanabe M 2020 Sci. Rep. 10 1158Google Scholar
[49] Chen S, Feng Z, Li J, Tan W, Du L, Cai J, Ma Y, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 99Google Scholar
Catalog
Metrics
- Abstract views: 13358
- PDF Downloads: 565
- Cited By: 0