Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz multibeam modulation reflection-coded metasurface

Huang Ruo-Tong Li Jiu-Sheng

Citation:

Terahertz multibeam modulation reflection-coded metasurface

Huang Ruo-Tong, Li Jiu-Sheng
PDF
HTML
Get Citation
  • Most of reported coding metasurfaces only use phase encoding or amplitude encoding to regulate electromagnetic waves, which limits the flexibility of terahertz wave regulation. In this work, a metasurface element structure is proposed. The metasurface element is composed of three layers, i.e. metal pattern structure layer, intermediate medium layer, and metal base layer. According to the geometric phase principle, the phase coverage in the 2π range can be achieved by rotating the metal pattern structure layer under the incidence of the circular-polarized terahertz wave. The metasurface element structure is arranged reasonably by using the phase coding, and the 1-bit and 2-bit phase coding metasurface are designed. First of all, the coding metasurface with interlacing “0” and “1” is designed to generate a double beam reflection under the vertical incidence of circular polarized terahertz waves, while the two-dimensional checkerboard coding metasurface with “0” and “1” generates a symmetrical four-beam reflection. In addition, the metasurface is designed to deflect the reflected beam, and the coding period is changed to design the metasurface to deflect the reflected beam to the specified angle, showing good flexibility. Finally, the convolutional operation is introduced to flexibly regulate the circular polarized beam, and the functions of beam splitting and reflection beam deflection are obtained. The amplitude coded metasurface is designed under theincidence of the online polarized terahertz wave, and the near-field imaging effect can be realized by the amplitude differentiation of polarization reflection. The designed amplitude coded metasurface realizes the function of imaging in space, presenting the designed “CJLU” pattern, which has different imaging effects at different observation locations. When the observation plane distance is 80 μm at the observation frequency of 1.22 THz, the near-field imaging effect is best. In conclusion, we propose a terahertz multibeam modulation reflection-coded metasurface, which combines geometric phase and amplitude variation to achieve different terahertz wave modulation functions under different polarization incident terahertz waves. The results from the simulated near-field radiation model and the far-field radiation model are both in agreement with the theoretical calculation predictions. The designed metasurface provides a degree of freedom method for terahertz wave polarization and phase manipulation, which greatly improves the efficiency of terahertz wave manipulation and has potential applications in terahertz systems.
      Corresponding author: Li Jiu-Sheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012), the Talent Project of Zhejiang Provincial Department of Science and Technology, China (Grant No. 2018R52043), and the Zhejiang Key R & D Project of China (Grant Nos. 2021C03153, 2022C03166).
    [1]

    Zhang C, Deng L, Wang L, Chen X, Li S 2021 Appl. Sci. 11 7128Google Scholar

    [2]

    Huang J, Yin X, Xu M, Liu M, Zhang Y, Zhang H 2022 Res. Phys. 33 105204Google Scholar

    [3]

    Sun X, Xu M, Wang G, Song Q, Li Y, Gao X 2022 Appl. Opt. 61 34Google Scholar

    [4]

    Xu Z, Sheng H, Wang Q, Zhou L, Shen Y 2021 SN Appl. Sci. 3 1Google Scholar

    [5]

    Dash S, Liaskos C, Akyildiz IF, Pitsillides A 2020 Mater. Sci. Forum 1009 63Google Scholar

    [6]

    Wang L, Lan F, Zeng H, et al. 2021 IEEE. 1 93Google Scholar

    [7]

    Gong Y, Quan B, Hu F, Wang H, Zhang L, Jiang M 2022 E Low dimens. Syst. Nanostruct. 143 115334Google Scholar

    [8]

    Niu J, Li C, Mo W, Yao Q, Zhu A 2022 J. Phys. D-Appl. Phys. 55 395105Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar

    [10]

    Li Z, Wang W, Deng S, Qu J, Li Y, Lü B 2022 Opt. Lett. 47 441Google Scholar

    [11]

    Yang D, Wang W, Lü E, Wang H, Liu B, Hou Y 2022 Iscience 25 104824Google Scholar

    [12]

    He C, Song Z 2022 Opt. Express 30 25498Google Scholar

    [13]

    Liu C X, Yang F, Fu X J, Wu J W, Zhang L, Yang J 2021 Adv. Opt. Mater. 9 2100932Google Scholar

    [14]

    Pan W M, Li J S 2021 Opt. Express 29 12918Google Scholar

    [15]

    Zhao D, Tan Z, Zhao H, Fan F, Chang S 2022 Opt. Lett. 47 818Google Scholar

    [16]

    Zheng S, Li C, Fang G 2021 Opt. Express 29 43403Google Scholar

    [17]

    Wang T, Chen B, Wu J, Yang S, Shen Z, Cai J 2021 Appl. Phys. Lett. 118 081101Google Scholar

    [18]

    Li W, Hu X, Wu J, Fan K, Chen B, Zhang C 2022 Light Sci. Appl. 11 1Google Scholar

    [19]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [20]

    Ren B, Feng Y, Tang S, Wu J L, Liu B, Song J 2022 Opt. Express 30 16229Google Scholar

    [21]

    Ren B, Feng Y, Tang S, Wang L, Jiang H, Jiang Y 2021 Opt. Express 29 17258Google Scholar

    [22]

    Li J, Cheng Y, Fan J, Chen F, Luo H, Li X 2022 Phys. Lett. 428 127932Google Scholar

    [23]

    Wei J, Qi Y, Zhang B, Ding J, Liu W, Wang X 2022 Opt. Commun. 502 127425Google Scholar

    [24]

    Zang X, Yao B, Chen L, Xie J, Guo X 2021 Light: Adv. Manuf. 2 148Google Scholar

    [25]

    Liu S, Ouyang C, Yao Z, Zhao J, Li Y, Feng L 2022 Opt. Express 30 28158Google Scholar

    [26]

    Qi Y, Zhang B, Ding J, Zhang T, Wang X, Yi Z 2021 Chin. Phys. B. 30 024211Google Scholar

    [27]

    He J, Chen R, Li Y, Chen S, Liu Z, Zhang Q 2021 Appl. Opt. 60 5752Google Scholar

    [28]

    Zhong M, Li J S 2022 Opt. Commun. 511 127997Google Scholar

    [29]

    Kou W, Shi W, Zhang Y, Yang Z, Chen T, Gu J 2021 IEEE. 12 13Google Scholar

    [30]

    Chen D C, Zhu X F, Wei Q, Yao J, Wu D J 2020 J. Phys. D Appl. Phys 53 255501Google Scholar

    [31]

    Saifullah Y, Yang G, Feng X U 2021 J. Radars 10 382Google Scholar

    [32]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H 2022 Front Mater 9 854062Google Scholar

  • 图 1  编码超表面结构示意图 (a) 幅度编码超表面; (b) 相位编码超表面; (c) 超表面单元

    Figure 1.  Schematic diagram of the proposed coding metasurface: (a) Amplitude coding metasurface; (b) phase coding metasurface; (c) unit cell.

    图 2  圆极化波入射时超表面单元的反射振幅和相位 (a)反射振幅; (b)反射相位

    Figure 2.  Reflection amplitude and phase of the unit cell under the circularly polarized wave incidence: (a) Reflection amplitude; (b) reflection phase.

    图 3  产生两分束太赫兹反射波的1-bit编码超表面 (a) 编码排布示意图; (b) 三维远场散射图; (c) 归一化反射振幅图

    Figure 3.  1-bit coding metasurface for generating two-reflected beam: (a) Layout diagram of coding metasurface; (b) three-dimensional far field scattering diagram; (c) normalized reflection amplitude diagram.

    图 4  产生四分束的1-bit编码超表面 (a) 编码排布示意图; (b) 三维远场散射图; (c) 归一化反射振幅图

    Figure 4.  1-bit coding metasurface for generating quadrant beam: (a) Layout diagram of coding metasurface; (b) three-dimensional far field scattering diagram; (c) normalized reflection amplitude diagram.

    图 5  编码超表面卷积过程示意图 (a)—(c) S1, S2和S3的超表面单元排布示意图; (d)—(f) 0.48 THz处左圆偏振入射时, S1, S2和S3的3D远场散射图; (g)—(i) 0.48 THz处左圆偏振入射时, S1, S2和S3的2D散射图

    Figure 5.  Convolution process schematic diagram of the coding metasurface: (a)–(c) Layout diagram of S1, S2 and S3 metasurfaces; (d)–(f) 3D far-field scattering diagram of S1, S2 and S3 under left circularly polarized incidence at 0.48 THz; (g)–(i) 2D scattering diagram of S1, S2 and S3 under left circularly polarized incident at 0.48 THz.

    图 6  2-bit反射编码超表面(“00-01-10-11···”) (a) 超表面排布示意图; (b) 超表面结构; (c) 三维远场散射图; (d) 归一化反射振幅图

    Figure 6.  2-bit reflected coding metasurface (“00-01-10-11···”): (a) Layout diagram of coding metasurface; (b) metasurface structure; (c) three-dimensional far field scattering diagram; (d) normalized reflection amplitude diagram.

    图 7  2-bit反射编码超表面(“0000-0101-1010-1111”) (a) 超表面排布示意图; (b) 超表面结构; (c) 三维远场散射图; (d) 归一化反射振幅图

    Figure 7.  2-bit reflection encoding metasurface (“0000-0101-1010-1111”): (a) Layout diagram of coding metasurface; (b) metasurface structure; (c) three-dimensional far field scattering diagram; (d) normalized reflection amplitude diagram.

    图 8  线极化波入射时超表面单元产生的反射幅度和反射相位 (a) 反射幅度; (b)反射相位

    Figure 8.  Reflected amplitude and phase of the unit cell under linearly polarized wave incidence: (a) Reflection amplitude; (b) reflection phase.

    图 9  “CJLU”超表面排布示意图

    Figure 9.  Layout diagram of "CJLU" metasurface.

    图 10  观测频率1.22 THz处, 观测平面距离为60 μm的近场图像

    Figure 10.  Near field image on an observation plane of 60 μm distance at 1.22 THz.

    图 11  观测频率1.22 THz处, 观测平面距离为80 μm的近场图像

    Figure 11.  Near field image on an observation plane of 80 μm distance at 1.22 THz.

    图 12  观测频率1.22 THz处, 观测平面距离为100 μm的近场图像

    Figure 12.  Near field image on an observation plane of 100 μm distance at 1.22 THz.

    表 1  编码超表面单元

    Table 1.  Unit cell of the proposed coding metasurface.

    1-bit相位编码01
    2-bit相位编码00 011011
    旋转角度/(°)0 4590135
    相位/(°)–137.21 –49.0943.99131.99
    俯视图
    DownLoad: CSV
  • [1]

    Zhang C, Deng L, Wang L, Chen X, Li S 2021 Appl. Sci. 11 7128Google Scholar

    [2]

    Huang J, Yin X, Xu M, Liu M, Zhang Y, Zhang H 2022 Res. Phys. 33 105204Google Scholar

    [3]

    Sun X, Xu M, Wang G, Song Q, Li Y, Gao X 2022 Appl. Opt. 61 34Google Scholar

    [4]

    Xu Z, Sheng H, Wang Q, Zhou L, Shen Y 2021 SN Appl. Sci. 3 1Google Scholar

    [5]

    Dash S, Liaskos C, Akyildiz IF, Pitsillides A 2020 Mater. Sci. Forum 1009 63Google Scholar

    [6]

    Wang L, Lan F, Zeng H, et al. 2021 IEEE. 1 93Google Scholar

    [7]

    Gong Y, Quan B, Hu F, Wang H, Zhang L, Jiang M 2022 E Low dimens. Syst. Nanostruct. 143 115334Google Scholar

    [8]

    Niu J, Li C, Mo W, Yao Q, Zhu A 2022 J. Phys. D-Appl. Phys. 55 395105Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar

    [10]

    Li Z, Wang W, Deng S, Qu J, Li Y, Lü B 2022 Opt. Lett. 47 441Google Scholar

    [11]

    Yang D, Wang W, Lü E, Wang H, Liu B, Hou Y 2022 Iscience 25 104824Google Scholar

    [12]

    He C, Song Z 2022 Opt. Express 30 25498Google Scholar

    [13]

    Liu C X, Yang F, Fu X J, Wu J W, Zhang L, Yang J 2021 Adv. Opt. Mater. 9 2100932Google Scholar

    [14]

    Pan W M, Li J S 2021 Opt. Express 29 12918Google Scholar

    [15]

    Zhao D, Tan Z, Zhao H, Fan F, Chang S 2022 Opt. Lett. 47 818Google Scholar

    [16]

    Zheng S, Li C, Fang G 2021 Opt. Express 29 43403Google Scholar

    [17]

    Wang T, Chen B, Wu J, Yang S, Shen Z, Cai J 2021 Appl. Phys. Lett. 118 081101Google Scholar

    [18]

    Li W, Hu X, Wu J, Fan K, Chen B, Zhang C 2022 Light Sci. Appl. 11 1Google Scholar

    [19]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [20]

    Ren B, Feng Y, Tang S, Wu J L, Liu B, Song J 2022 Opt. Express 30 16229Google Scholar

    [21]

    Ren B, Feng Y, Tang S, Wang L, Jiang H, Jiang Y 2021 Opt. Express 29 17258Google Scholar

    [22]

    Li J, Cheng Y, Fan J, Chen F, Luo H, Li X 2022 Phys. Lett. 428 127932Google Scholar

    [23]

    Wei J, Qi Y, Zhang B, Ding J, Liu W, Wang X 2022 Opt. Commun. 502 127425Google Scholar

    [24]

    Zang X, Yao B, Chen L, Xie J, Guo X 2021 Light: Adv. Manuf. 2 148Google Scholar

    [25]

    Liu S, Ouyang C, Yao Z, Zhao J, Li Y, Feng L 2022 Opt. Express 30 28158Google Scholar

    [26]

    Qi Y, Zhang B, Ding J, Zhang T, Wang X, Yi Z 2021 Chin. Phys. B. 30 024211Google Scholar

    [27]

    He J, Chen R, Li Y, Chen S, Liu Z, Zhang Q 2021 Appl. Opt. 60 5752Google Scholar

    [28]

    Zhong M, Li J S 2022 Opt. Commun. 511 127997Google Scholar

    [29]

    Kou W, Shi W, Zhang Y, Yang Z, Chen T, Gu J 2021 IEEE. 12 13Google Scholar

    [30]

    Chen D C, Zhu X F, Wei Q, Yao J, Wu D J 2020 J. Phys. D Appl. Phys 53 255501Google Scholar

    [31]

    Saifullah Y, Yang G, Feng X U 2021 J. Radars 10 382Google Scholar

    [32]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H 2022 Front Mater 9 854062Google Scholar

  • [1] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [7] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [8] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [9] Wang Da-Yong, Li Bing, Rong Lu, Zhao Jie, Wang Yun-Xin, Zhai Chang-Chao. Continuous-wave terahertz quantitative dual-plane ptychography. Acta Physica Sinica, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [10] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [13] Wang Jing-Li, Liu Yang, Zhong Kai. Dual-core terahertz polarization splitter based on porous fibers with near-tie units. Acta Physica Sinica, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [14] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [15] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [16] Bao Di, Shen Xiao-Peng, Cui Tie-Jun. Progress of terahertz metamaterials. Acta Physica Sinica, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [17] Lu Wen-Liang, Lou Shu-Qin, Wang Xin, Shen Yan, Sheng Xin-Zhi. False-color terahertz imaging system based on terahertz time domain spectrocsopy. Acta Physica Sinica, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [18] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] Zhang Xian-Bin, Shi Wei. Study of imaging system based on the tunable terahertz wave source with quasi-Gaussian beam output. Acta Physica Sinica, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
Metrics
  • Abstract views:  6379
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2022
  • Accepted Date:  17 December 2022
  • Available Online:  26 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回