-
A low-noise single-frequency laser is a key component of the space-based gravitational wave detector, and the intensity noise of the laser directly affects the sensitivity of the space-based GW detector. In this work, we report a low-noise single-frequency laser designed for space-based gravitational wave detector. The laser is based on a master oscillator power amplifier (MOPA), which is designed to possess a low-power, narrow-linewidth seed laser acting as master oscillator (MO) and an all polarization-maintaining fiber amplifier acting as power amplifier (PA). The amplifier that uses a robust mechanical design consists of an Yb-doped double-clad fiber forward pumped by wavelength-locked 976 nm pump laser diode (LD) to achieve 2.13 W of output power and 70 dB of signal-noise ratio (SNR). To suppress the relative intensity noise (RIN) in a millhertz regime (1 mHz–1 Hz), we characterize the power stabilization of a pump diode laser based on a proportional-integral-derivative (PID) feedback control loop where an in-loop photodetector is used. The power fluctuation can be converted into the fluctuation of the current signal by the photodiode, the current signal is converted into the voltage signal and amplified by a transimpedance circuit. Then, the voltage signal is compared with the voltage reference signal, and the error signal is achieved to adjust real-timely the drive current of the pump laser diode. This is a good way to significantly suppress the RIN of a laser at low frequencies, but the measured RIN below 4 mHz is still higher than –60 dBc/Hz. In order to further suppress the RIN to lower than 4 mHz, an active precise temperature control technology is used to suppress the thermal noise from pump LD and fiber coupler. To assess the RIN milliertz regime, we design an RIN measurement system consisting of a high-precision signal acquisition card (24 bit) and a computer program based on LabVIEW. The measurement range of the system is 2 μHz–102.4 kHz and the frequency resolution up to 2 µHz, much better than the counterparts of commercial instruments. By stabilizing the fiber amplifier pump LD current and the temperature of pump LD and the temperature of fiber coupler, the out-of-loop RINs are measured to be –63.4 dBc/Hz@1 mHz and –105.8 dBc/Hz@1 Hz , and in a milliertz regime of 1 mHz–1 Hz, the RIN is below –60 dBc/Hz. The results show that the feedback control of the fiber amplifier pump LD current and the temperature control of the key devices can effectively suppress the RIN in the millihertz frequency band, which lays a foundation for further improving the intensity noise performance in the low frequency band.
-
Keywords:
- single-frequency laser /
- millihertz band /
- relative intensity noise /
- optoelectronic negative feedback
[1] Numata K, Yu A, Jiao H, Merritt S, Micalizzi F, Fahey M, Camp J, Krainak M 2019 Proceedings of SPIE: Solid State Lasers XXIII: Technology and Devices 10896 108961HGoogle Scholar
[2] 罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar
Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar
[3] Peterseim M, Brozek O S, Danzmann K, Freitag I, Rottengatter P, Tünnermann A, Welling H 1998 AIP Conf. Proc. 456 148Google Scholar
[4] O’Brien S, Welch D, Parke R, Mehuys D, Dzurko K, Lang R, Waarts R, Scifres D 1993 IEEE J. Quantum Electron. 29 2052Google Scholar
[5] Yang C S, Xu S H, Chen D, Zhang Y F, Zhao Q L, Li C, Zhou K J, Feng Z M, Gan J L, Yang Z M 2016 J. Opt. 18 055801Google Scholar
[6] Kane T 1990 IEEE Photonics Technol. Lett. 2 244Google Scholar
[7] 李灿 2015 博士学位论文 (广州: 华南理工大学)
Li C 2015 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)
[8] Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)
[9] Nicklaus K, Herding M, Wang X, Beller N, Fitzau O, Giesberts M, Herper M, Barwood G P, Williams R A, Gill P, Koegel H, Webster A, Gohlke M 2014 Proceedings of the International Conference on Space Optics 10563 105632TGoogle Scholar
[10] Dahl K, Cebeci P, Fitzau O, Giesberts M, Greve C, Krutzik M, Peters A, Pyka S, Sanjuan J, Schiemangk M, Schuldt T, Voss K, Wicht A 2018 Proc. SPIE 11180 111800CGoogle Scholar
[11] Milyukov V 2020 Astron. Rep. 64 1067Google Scholar
[12] Gong Y G, Jun Luo, Wang B 2021 Nat. Astron. 5 881Google Scholar
[13] Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar
[14] Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar
[15] Foster S B, Tikhomirov A E. 2010 IEEE J. Quantum Electron. 46 734Google Scholar
[16] Guiraud G, Traynor N, Santarelli G 2016 Opt. Lett. 41 4040Google Scholar
[17] 杨中民, 徐善辉 2017 单频光纤激光器(北京: 科学出版社) 第59页
Yang Z M, Xu S H 2017 Single-frequency Fiber Laser (Beijing: Science Press) p59 (in Chinese)
[18] Hui R Q, O’Sullivan M 2009 Fiber Optic Test & Measurement (California: Elsevier Academic Press) pp263–264
[19] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 17 209501Google Scholar
Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 17 209501Google Scholar
[20] Willke B 2010 Laser Photonics Rev. 4 780Google Scholar
[21] Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar
[22] Möller L 1998 IEEE J. Quantum Electron. 34 1554Google Scholar
[23] Xue M Y, Gao C X, Niu L Q, Zhu A L, Sun C D 2020 Appl. Opt. 59 2610Google Scholar
-
-
[1] Numata K, Yu A, Jiao H, Merritt S, Micalizzi F, Fahey M, Camp J, Krainak M 2019 Proceedings of SPIE: Solid State Lasers XXIII: Technology and Devices 10896 108961HGoogle Scholar
[2] 罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar
Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar
[3] Peterseim M, Brozek O S, Danzmann K, Freitag I, Rottengatter P, Tünnermann A, Welling H 1998 AIP Conf. Proc. 456 148Google Scholar
[4] O’Brien S, Welch D, Parke R, Mehuys D, Dzurko K, Lang R, Waarts R, Scifres D 1993 IEEE J. Quantum Electron. 29 2052Google Scholar
[5] Yang C S, Xu S H, Chen D, Zhang Y F, Zhao Q L, Li C, Zhou K J, Feng Z M, Gan J L, Yang Z M 2016 J. Opt. 18 055801Google Scholar
[6] Kane T 1990 IEEE Photonics Technol. Lett. 2 244Google Scholar
[7] 李灿 2015 博士学位论文 (广州: 华南理工大学)
Li C 2015 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)
[8] Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)
[9] Nicklaus K, Herding M, Wang X, Beller N, Fitzau O, Giesberts M, Herper M, Barwood G P, Williams R A, Gill P, Koegel H, Webster A, Gohlke M 2014 Proceedings of the International Conference on Space Optics 10563 105632TGoogle Scholar
[10] Dahl K, Cebeci P, Fitzau O, Giesberts M, Greve C, Krutzik M, Peters A, Pyka S, Sanjuan J, Schiemangk M, Schuldt T, Voss K, Wicht A 2018 Proc. SPIE 11180 111800CGoogle Scholar
[11] Milyukov V 2020 Astron. Rep. 64 1067Google Scholar
[12] Gong Y G, Jun Luo, Wang B 2021 Nat. Astron. 5 881Google Scholar
[13] Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar
[14] Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar
[15] Foster S B, Tikhomirov A E. 2010 IEEE J. Quantum Electron. 46 734Google Scholar
[16] Guiraud G, Traynor N, Santarelli G 2016 Opt. Lett. 41 4040Google Scholar
[17] 杨中民, 徐善辉 2017 单频光纤激光器(北京: 科学出版社) 第59页
Yang Z M, Xu S H 2017 Single-frequency Fiber Laser (Beijing: Science Press) p59 (in Chinese)
[18] Hui R Q, O’Sullivan M 2009 Fiber Optic Test & Measurement (California: Elsevier Academic Press) pp263–264
[19] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 17 209501Google Scholar
Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 17 209501Google Scholar
[20] Willke B 2010 Laser Photonics Rev. 4 780Google Scholar
[21] Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar
[22] Möller L 1998 IEEE J. Quantum Electron. 34 1554Google Scholar
[23] Xue M Y, Gao C X, Niu L Q, Zhu A L, Sun C D 2020 Appl. Opt. 59 2610Google Scholar
Catalog
Metrics
- Abstract views: 3747
- PDF Downloads: 91
- Cited By: 0