Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast terahertz detectors

Zhang Zhen-Zhen Li Hua Cao Jun-Cheng

Citation:

Ultrafast terahertz detectors

Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Terahertz (THz) technologies have broad application prospects in ultrafast space communication, heterodyne detection, biological detection, non-destructive testing and national security. Ultrafast THz detectors, which can respond to the THz light with modulation rate larger than 1 GHz, are the key component of fast imaging, space communication, ultrafast spectroscopy and THz heterodyne applications. Theoretically, the traditional THz detectors based on heat effects are difficult to meet the requirements for fast detections, while the semiconductor based THz detectors can work under the condition of ultrafast detection. Photoconductive antennas with ultrafast response time are suitable for room-temperature broad-spectrum THz detections. Schottky barrier diodes, superconductor-insulator-superconductor mixers and hot electron bolometers are promising candidates for high-speed THz spatial heterodyne and direct detections attributable to their high conversion efficiency and low noise. High-mobility field effect transistors based on two-dimensional graphene material have the advantages of high sensitivity and low impedance, which make this kind of device have great potential applications in room-temperature high-speed detections. THz quantum well detectors (THz QWPs) based on inter-subband transitions are very suitable for the applications in high-frequency and high-speed detections because of the advantages of high responsivity, small value and integrated packaging. Recently, we have demonstrated 6.2 GHz bandwidth modulation by using THz QWPs, the fast THz receiving device. On the other hand, low working temperature and low coupling efficiency are the main factors that restrict the applications of THz QWPs. From the Brewster angle, 45 polished facet coupling structure, to one-or two-dimensional metal grating and surface Plasmon polariton coupling configuration, researchers often explore the appropriate coupling mechanism which can not only couple the normal incidence THz light, but also improve the coupling efficiency substantially. The sub-wavelength double-metal micro-cavity array coupling structure has two advantages which make THz QWPs a key candidate for fast imaging and detection in THz band:firstly, the patch antennas on the device surface can effectively increase the light absorption region, and the periodic structure can make the normal incidence THz light fulfill the rule of intersubband transition. Secondly, the sub-wavelength size double metal structure can restrict the light within a very small volume, and the electric current will be enhanced by the resonance effect when the cavity mode is equal to the peak response frequency, which can suppress the dark current and improve the optical coupling efficiency of the device. In this paper, several ultrafast THz detectors are reviewed and the advantages and disadvantages of various detectors are also analyzed.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn ; Cao Jun-Cheng, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National Key RD Program of China (Grant No. 2017YFF0106302), the National Natural Science Foundation of China (Grant Nos. 61575214, 61405233, 61404150), and the Hundred Talents Program of Chinese Academy of Sciences.
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (Beijing: Science Press) pp1-7 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(北京: 科学出版社)第17页]

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [4]

    Zheng X, Wu Z M, Gou J, Liu Z J, Wang J, Zheng J, Luo Z F, Chen W Q, Que L C, Jiang Y D 2016 J. Infrared Millim. Terahertz Waves 37 965

    [5]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [6]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [7]

    Azad A K, Dai J M, Zhang W L 2006 Opt. Lett. 31 634

    [8]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [9]

    Gol'tsman G N 1999 Infrared Phys. Technol. 40 199

    [10]

    Qin H, Huang Y D, Sun J D, Zhang Z P, Yu Y, Li X, Sun Y F 2017 Chin. Opt. 10 51 (in Chinese) [秦华, 黄永丹, 孙建东, 张志鹏, 余耀, 李想, 孙云飞 2017 中国光学 10 51]

    [11]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865

    [12]

    Sun J D, Qin H, Lwis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M, Zhang B S 2012 Appl. Phys. Lett. 100 173513

    [13]

    Liu H C, Song C Y, SpringThorpe A J, Cao J C 2004 Appl. Phys. Lett. 84 4068

    [14]

    Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J, Cao J C 2008 IEEE J. Sel. Top. Quantum Electron. 14 374

    [15]

    Guo X G, Cao J C, Zhang R, Tan Z Y, Liu H C 2013 IEEE J. Sel. Top. Quantum Electron. 19 8500508

    [16]

    Zhang R, Guo X G, Cao J C, Liu H C 2011 J. Appl. Phys. 109 073110

    [17]

    Guo X G, Zhang R, Cao J C, Liu H C 2012 IEEE J. Quantum Electron. 48 1113

    [18]

    Schneider H, Liu H C 2006 Quantum Well Infrared Photodetectors: Physics and Applications (Berlin: Spinger) pp67-69

    [19]

    Wu W, Bonakdar A, Mohseni H 2010 Appl. Phys. Lett. 96 161107

    [20]

    Liu H C, Capasso F 2000 Intersubband Transition in Quantum Wells: Physics and Device Applications I (San Diego: Academic Press)

    [21]

    Auston D H 1975 Appl. Phys. Lett. 26 101

    [22]

    Lefur P, Auston D H 1976 Appl. Phys. Lett. 28 21

    [23]

    Valdmanis J A, Mourou G, Gabel C W 1982 Appl. Phys. Lett. 41 211

    [24]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [25]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [26]

    Chen S G, Shi W, Hou L, Lwis R A 2017 IEEE J. Sel. Top. Quantum Electron. 23 8400406

    [27]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2006 Int. J. Infrared Millim. Waves 27 531

    [28]

    Grischkowsky D, Keiding S, Vanexter M, Fattinger C 1990 J. Opt. Soc. Am. B 7 2006

    [29]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716

    [30]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [31]

    Xu L, Zhang X C, Auston D H 1992 Appl. Phys. Lett. 61 1784

    [32]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C L 2006 Phys. Lett. A 359 728

    [33]

    Hubers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378

    [34]

    Rogalski A, Sizov F 2011 Opto-Electron. Rev. 19 346

    [35]

    McIntosh K A, Brown E R, Nichols K B, McMahon O B, DiNatale W F, Lyszczarz T M 1995 Appl. Phys. Lett. 67 3844

    [36]

    Peytavit E, Coinon C, Lampin J F 2011 J. Appl. Phys. 109 016101

    [37]

    Peytavit E, Lampin J F, Hindle F, Yang C, Mouret G 2009 Appl. Phys. Lett. 95 161102

    [38]

    Englert C R, Schimpf B, Birk M, Schreier F, Krocka M, Nitsche R G, Titz R U, Summers M E 2000 J. Geophys. Res. Atmos. 105 22211

    [39]

    Pickett H M 2006 IEEE Trans. Geosci. Remote Sensing 44 1122

    [40]

    Gulkis S, Allen M, Backus C, Beaudin G, Biver N, Bockelee-Morvan D, Crovisier J, Despois D, Encrenaz P, Frerking M, Hofstadter M, Hartogh P, Ip W, Janssen M, Kamp L, Koch T, Lellouch E, Mann I, Muhleman D, Rauer H, Schloerb P, Spilker T 2007 Planet Space Sci. 55 1050

    [41]

    Siegel P H, Dengler R J 2006 Int. J. Infrared Millim. Waves 27 465

    [42]

    Crowe T W, Mattauch R J, Roser H P, Bishop W L, Peatman W C B, Liu X L 1992 Proc. IEEE 80 1827

    [43]

    Zmuidzinas J, Richards P L 2004 Proc. IEEE 92 1597

    [44]

    Bozhkov V G 2003 Radiophys. Quant. Electron. 46 631

    [45]

    Champlin K S, Eisenstein G 1978 IEEE Trans. Microw. Theory 26 31

    [46]

    Hubers H W, Schwaab G W, Roser H P 1994 J. Appl. Phys. 75 4243

    [47]

    Crowe T W, Porterfield D W, Hesler J L, Bishop W L, Kurtz D S, Hui K (Hwu R J, Woolard D L Rosker M J ed.) 2005 Terahertz for Military and Security Applications Ⅲ (Vol. 5790) (Bellingham: Spie-Int Soc Optical Engineering) pp271-280

    [48]

    Young D T, Irvin J C 1965 Proc. IEEE 53 2130

    [49]

    Ishi T, Fujikata J, Makita K, Baba T, Ohashi K 2005 Jpn. J. Appl. Phys. 44 L364

    [50]

    Tien P K, Gordon J P 1963 Phys. Rev. 129 647

    [51]

    Uzawa Y, Wang Z, Kawakami A 1998 Appl. Phys. Lett. 73 680

    [52]

    Karpov A, Miller D, Rice F, Stern J A, Bumble B, Leduc H G, Zmuidzinas J 2007 IEEE Trans. Appl. Supercon. 17 343

    [53]

    Gaidis M C, Leduc H G, Mei B, Miller D 1996 IEEE Trans. Microwave Theory Tech. 44 1130

    [54]

    Kawamura J, Miller D, Chen J, Zmuidzinas J, Bumble B, Leduc H G, Stern J A 2000 Appl. Phys. Lett. 76 2119

    [55]

    Phillips T G, Jefferts K B 1973 Rev Sci. Instrum. 44 1009

    [56]

    Ren Y A, Miao W, Yao Q J, Zhang W, Shi S C 2011 Chin. Phys. Lett. 28 010702

    [57]

    Richards P L 1994 J. Appl. Phys. 76 1

    [58]

    Qin H, Sun J D, Liang S X, Li X, Yang X X, He Z H, Yu C, Feng Z H 2017 Carbon 116 760

    [59]

    Qin H, Sun J D, He Z Z, Li X X, Li X, Liang S X, Yu C, Feng Z H, Tu X C, Jin B B, Chen J, Wu P H 2017 Carbon 121 235

    [60]

    Cao J C 2006 Physics 35 953 (in Chinese) [曹俊诚 2006 物理 35 953]

    [61]

    Zhang S, Wang T M, Hao M R, Yang Y, Zhang Y H, Shen W Z, Liu H C 2013 J. Appl. Phys. 114 194507

    [62]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [63]

    Gu L L, Guo X G, Fu Z L, Wan W J, Zhang R, Tan Z Y, Cao J C 2015 Appl. Phys. Lett. 106 111107

    [64]

    Ferre S, Razavipour S G, Ban D Y 2013 Appl. Phys. Lett. 103 081105

    [65]

    Gomez A, Berger V, Pere-Laperne N, de Vaulchier L A 2008 Appl. Phys. Lett. 92 202110

    [66]

    Delga A, Doyennette L, Buffaz A, Berger V, Jasnot F R, de Vaulchier L A, Pere-Laperne N, Liu H C 2011 J. Appl. Phys. 110 013714

    [67]

    Guo X G, Zhang R, Liu H C, SpringThorpe A J, Cao J C 2010 Appl. Phys. Lett. 97 021114

    [68]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [69]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2014 Sci. Rep. 4 4269

    [70]

    Giannini V, Berrier A, Maier S A, Sanchez-Gil J A, Rivas J G 2010 Opt. Express 18 2797

    [71]

    Harrer A, Schwarz B, Gansch R, Reininger P, Detz H, Zederbauer T, Andrews A M, Schrenk W, Strasser G 2014 Appl. Phys. Lett. 105 171112

    [72]

    Degl'Innocenti R, Xiao L, Jessop D S, Kindness S J, Ren Y, Lin H Y, Zeitler J A, Alexander-Webber J A, Joyce H J, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A 2016 ACS Photon. 3 1747

    [73]

    Zhang Z Z, Fu Z L, Guo X G, Cao J C 2018 Chin. Phys. B 27 030701

    [74]

    Zhang R, Fu Z L, Gu L L, Guo X G, Cao J C 2015 Appl. Phys. Lett. 106 029902

    [75]

    Gu L, Tan Z Y, Cao J C 2013 Physics 42 695 (in Chinese) [顾立, 谭智勇, 曹俊诚 2013 物理 42 695]

    [76]

    Grant P D, Dudek R, Buchanan M, Wolfson L, Liu H C 2005 Infrared Phys. Technol. 47 144

    [77]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H C 2011 Electron. Lett. 47 1002

    [78]

    Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G, Cao J C 2017 Sci. Rep. 7 3452

    [79]

    Zhou T, Li H, Wan W J, Fu Z L, Cao J C 2017 AIP Adv. 7 105215

    [80]

    Vahala K J 2003 Nature 424 839

    [81]

    Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501

    [82]

    Strupiechonski E, Xu G, Brekenfeld M, Todorov Y, Isac N, Andrews A M, Klang P, Sirtori C, Strasser G, Degiron A, Colombelli R 2012 Appl. Phys. Lett. 100 131113

    [83]

    Feuillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L, Sirtori C 2012 Opt. Express 20 29121

    [84]

    Todorov Y, Minot C 2007 J. Opt. Soc. Am. A 24 3100

    [85]

    Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G, Sirtori C 2010 Opt. Express 18 13886

    [86]

    Collin S, Pardo F, Pelouard J L 2003 Appl. Phys. Lett. 83 1521

    [87]

    Collin S, Pardo F, Teissier R, Pelouard J L 2004 Appl. Phys. Lett. 85 194

    [88]

    Paulillo B, Pirotta S, Nong H, Crozat P, Guilet S, Xu G, Dhillon S, Li L H, Davies A G, Linfield E H, Colombelli R 2017 Optica 4 1451

    [89]

    Feuillet-Palma C, Todorov Y, Vasanelli A, Sirtori C 2013 Sci. Rep. 3 1361

    [90]

    Palaferri D, Todorov Y, Chen Y N, Madeo J, Vasanelli A, Li L H, Davies A G, Linfield E H, Sirtori C 2015 Appl. Phys. Lett. 106 161102

    [91]

    Palaferri D, Todorov Y, Mottaghizadeh A, Frucci G, Biasiol G, Sirtori C 2016 New J. Phys. 18 113016

    [92]

    Chen Y N, Todorov Y, Askenazi B, Vasanelli A, Biasiol G, Colombelli R, Sirtori C 2014 Appl. Phys. Lett. 104 031113

    [93]

    Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Djamal G, Calabrese A, Vasanelli A, Li L, Giles Davies A, Linfield E, Kapsalidis F, Beck M, Faist J, Sirtori C 2017 arXiv: 1709.01898 [physics.app-ph]

  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (Beijing: Science Press) pp1-7 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(北京: 科学出版社)第17页]

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [4]

    Zheng X, Wu Z M, Gou J, Liu Z J, Wang J, Zheng J, Luo Z F, Chen W Q, Que L C, Jiang Y D 2016 J. Infrared Millim. Terahertz Waves 37 965

    [5]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [6]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [7]

    Azad A K, Dai J M, Zhang W L 2006 Opt. Lett. 31 634

    [8]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [9]

    Gol'tsman G N 1999 Infrared Phys. Technol. 40 199

    [10]

    Qin H, Huang Y D, Sun J D, Zhang Z P, Yu Y, Li X, Sun Y F 2017 Chin. Opt. 10 51 (in Chinese) [秦华, 黄永丹, 孙建东, 张志鹏, 余耀, 李想, 孙云飞 2017 中国光学 10 51]

    [11]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865

    [12]

    Sun J D, Qin H, Lwis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M, Zhang B S 2012 Appl. Phys. Lett. 100 173513

    [13]

    Liu H C, Song C Y, SpringThorpe A J, Cao J C 2004 Appl. Phys. Lett. 84 4068

    [14]

    Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J, Cao J C 2008 IEEE J. Sel. Top. Quantum Electron. 14 374

    [15]

    Guo X G, Cao J C, Zhang R, Tan Z Y, Liu H C 2013 IEEE J. Sel. Top. Quantum Electron. 19 8500508

    [16]

    Zhang R, Guo X G, Cao J C, Liu H C 2011 J. Appl. Phys. 109 073110

    [17]

    Guo X G, Zhang R, Cao J C, Liu H C 2012 IEEE J. Quantum Electron. 48 1113

    [18]

    Schneider H, Liu H C 2006 Quantum Well Infrared Photodetectors: Physics and Applications (Berlin: Spinger) pp67-69

    [19]

    Wu W, Bonakdar A, Mohseni H 2010 Appl. Phys. Lett. 96 161107

    [20]

    Liu H C, Capasso F 2000 Intersubband Transition in Quantum Wells: Physics and Device Applications I (San Diego: Academic Press)

    [21]

    Auston D H 1975 Appl. Phys. Lett. 26 101

    [22]

    Lefur P, Auston D H 1976 Appl. Phys. Lett. 28 21

    [23]

    Valdmanis J A, Mourou G, Gabel C W 1982 Appl. Phys. Lett. 41 211

    [24]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [25]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [26]

    Chen S G, Shi W, Hou L, Lwis R A 2017 IEEE J. Sel. Top. Quantum Electron. 23 8400406

    [27]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2006 Int. J. Infrared Millim. Waves 27 531

    [28]

    Grischkowsky D, Keiding S, Vanexter M, Fattinger C 1990 J. Opt. Soc. Am. B 7 2006

    [29]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716

    [30]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [31]

    Xu L, Zhang X C, Auston D H 1992 Appl. Phys. Lett. 61 1784

    [32]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C L 2006 Phys. Lett. A 359 728

    [33]

    Hubers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378

    [34]

    Rogalski A, Sizov F 2011 Opto-Electron. Rev. 19 346

    [35]

    McIntosh K A, Brown E R, Nichols K B, McMahon O B, DiNatale W F, Lyszczarz T M 1995 Appl. Phys. Lett. 67 3844

    [36]

    Peytavit E, Coinon C, Lampin J F 2011 J. Appl. Phys. 109 016101

    [37]

    Peytavit E, Lampin J F, Hindle F, Yang C, Mouret G 2009 Appl. Phys. Lett. 95 161102

    [38]

    Englert C R, Schimpf B, Birk M, Schreier F, Krocka M, Nitsche R G, Titz R U, Summers M E 2000 J. Geophys. Res. Atmos. 105 22211

    [39]

    Pickett H M 2006 IEEE Trans. Geosci. Remote Sensing 44 1122

    [40]

    Gulkis S, Allen M, Backus C, Beaudin G, Biver N, Bockelee-Morvan D, Crovisier J, Despois D, Encrenaz P, Frerking M, Hofstadter M, Hartogh P, Ip W, Janssen M, Kamp L, Koch T, Lellouch E, Mann I, Muhleman D, Rauer H, Schloerb P, Spilker T 2007 Planet Space Sci. 55 1050

    [41]

    Siegel P H, Dengler R J 2006 Int. J. Infrared Millim. Waves 27 465

    [42]

    Crowe T W, Mattauch R J, Roser H P, Bishop W L, Peatman W C B, Liu X L 1992 Proc. IEEE 80 1827

    [43]

    Zmuidzinas J, Richards P L 2004 Proc. IEEE 92 1597

    [44]

    Bozhkov V G 2003 Radiophys. Quant. Electron. 46 631

    [45]

    Champlin K S, Eisenstein G 1978 IEEE Trans. Microw. Theory 26 31

    [46]

    Hubers H W, Schwaab G W, Roser H P 1994 J. Appl. Phys. 75 4243

    [47]

    Crowe T W, Porterfield D W, Hesler J L, Bishop W L, Kurtz D S, Hui K (Hwu R J, Woolard D L Rosker M J ed.) 2005 Terahertz for Military and Security Applications Ⅲ (Vol. 5790) (Bellingham: Spie-Int Soc Optical Engineering) pp271-280

    [48]

    Young D T, Irvin J C 1965 Proc. IEEE 53 2130

    [49]

    Ishi T, Fujikata J, Makita K, Baba T, Ohashi K 2005 Jpn. J. Appl. Phys. 44 L364

    [50]

    Tien P K, Gordon J P 1963 Phys. Rev. 129 647

    [51]

    Uzawa Y, Wang Z, Kawakami A 1998 Appl. Phys. Lett. 73 680

    [52]

    Karpov A, Miller D, Rice F, Stern J A, Bumble B, Leduc H G, Zmuidzinas J 2007 IEEE Trans. Appl. Supercon. 17 343

    [53]

    Gaidis M C, Leduc H G, Mei B, Miller D 1996 IEEE Trans. Microwave Theory Tech. 44 1130

    [54]

    Kawamura J, Miller D, Chen J, Zmuidzinas J, Bumble B, Leduc H G, Stern J A 2000 Appl. Phys. Lett. 76 2119

    [55]

    Phillips T G, Jefferts K B 1973 Rev Sci. Instrum. 44 1009

    [56]

    Ren Y A, Miao W, Yao Q J, Zhang W, Shi S C 2011 Chin. Phys. Lett. 28 010702

    [57]

    Richards P L 1994 J. Appl. Phys. 76 1

    [58]

    Qin H, Sun J D, Liang S X, Li X, Yang X X, He Z H, Yu C, Feng Z H 2017 Carbon 116 760

    [59]

    Qin H, Sun J D, He Z Z, Li X X, Li X, Liang S X, Yu C, Feng Z H, Tu X C, Jin B B, Chen J, Wu P H 2017 Carbon 121 235

    [60]

    Cao J C 2006 Physics 35 953 (in Chinese) [曹俊诚 2006 物理 35 953]

    [61]

    Zhang S, Wang T M, Hao M R, Yang Y, Zhang Y H, Shen W Z, Liu H C 2013 J. Appl. Phys. 114 194507

    [62]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [63]

    Gu L L, Guo X G, Fu Z L, Wan W J, Zhang R, Tan Z Y, Cao J C 2015 Appl. Phys. Lett. 106 111107

    [64]

    Ferre S, Razavipour S G, Ban D Y 2013 Appl. Phys. Lett. 103 081105

    [65]

    Gomez A, Berger V, Pere-Laperne N, de Vaulchier L A 2008 Appl. Phys. Lett. 92 202110

    [66]

    Delga A, Doyennette L, Buffaz A, Berger V, Jasnot F R, de Vaulchier L A, Pere-Laperne N, Liu H C 2011 J. Appl. Phys. 110 013714

    [67]

    Guo X G, Zhang R, Liu H C, SpringThorpe A J, Cao J C 2010 Appl. Phys. Lett. 97 021114

    [68]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [69]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2014 Sci. Rep. 4 4269

    [70]

    Giannini V, Berrier A, Maier S A, Sanchez-Gil J A, Rivas J G 2010 Opt. Express 18 2797

    [71]

    Harrer A, Schwarz B, Gansch R, Reininger P, Detz H, Zederbauer T, Andrews A M, Schrenk W, Strasser G 2014 Appl. Phys. Lett. 105 171112

    [72]

    Degl'Innocenti R, Xiao L, Jessop D S, Kindness S J, Ren Y, Lin H Y, Zeitler J A, Alexander-Webber J A, Joyce H J, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A 2016 ACS Photon. 3 1747

    [73]

    Zhang Z Z, Fu Z L, Guo X G, Cao J C 2018 Chin. Phys. B 27 030701

    [74]

    Zhang R, Fu Z L, Gu L L, Guo X G, Cao J C 2015 Appl. Phys. Lett. 106 029902

    [75]

    Gu L, Tan Z Y, Cao J C 2013 Physics 42 695 (in Chinese) [顾立, 谭智勇, 曹俊诚 2013 物理 42 695]

    [76]

    Grant P D, Dudek R, Buchanan M, Wolfson L, Liu H C 2005 Infrared Phys. Technol. 47 144

    [77]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H C 2011 Electron. Lett. 47 1002

    [78]

    Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G, Cao J C 2017 Sci. Rep. 7 3452

    [79]

    Zhou T, Li H, Wan W J, Fu Z L, Cao J C 2017 AIP Adv. 7 105215

    [80]

    Vahala K J 2003 Nature 424 839

    [81]

    Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501

    [82]

    Strupiechonski E, Xu G, Brekenfeld M, Todorov Y, Isac N, Andrews A M, Klang P, Sirtori C, Strasser G, Degiron A, Colombelli R 2012 Appl. Phys. Lett. 100 131113

    [83]

    Feuillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L, Sirtori C 2012 Opt. Express 20 29121

    [84]

    Todorov Y, Minot C 2007 J. Opt. Soc. Am. A 24 3100

    [85]

    Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G, Sirtori C 2010 Opt. Express 18 13886

    [86]

    Collin S, Pardo F, Pelouard J L 2003 Appl. Phys. Lett. 83 1521

    [87]

    Collin S, Pardo F, Teissier R, Pelouard J L 2004 Appl. Phys. Lett. 85 194

    [88]

    Paulillo B, Pirotta S, Nong H, Crozat P, Guilet S, Xu G, Dhillon S, Li L H, Davies A G, Linfield E H, Colombelli R 2017 Optica 4 1451

    [89]

    Feuillet-Palma C, Todorov Y, Vasanelli A, Sirtori C 2013 Sci. Rep. 3 1361

    [90]

    Palaferri D, Todorov Y, Chen Y N, Madeo J, Vasanelli A, Li L H, Davies A G, Linfield E H, Sirtori C 2015 Appl. Phys. Lett. 106 161102

    [91]

    Palaferri D, Todorov Y, Mottaghizadeh A, Frucci G, Biasiol G, Sirtori C 2016 New J. Phys. 18 113016

    [92]

    Chen Y N, Todorov Y, Askenazi B, Vasanelli A, Biasiol G, Colombelli R, Sirtori C 2014 Appl. Phys. Lett. 104 031113

    [93]

    Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Djamal G, Calabrese A, Vasanelli A, Li L, Giles Davies A, Linfield E, Kapsalidis F, Beck M, Faist J, Sirtori C 2017 arXiv: 1709.01898 [physics.app-ph]

  • [1] Wang Yang-Tao, Jing Wei-Xuan, Han Feng, Meng Qing-Zhi, Lin Qi-Jing, Zhao Li-Bo, Jiang Zhuang-De. Study on influence of ring hole array metamaterial on performance of pyroelectric terahertz detectors. Acta Physica Sinica, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [2] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [5] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [7] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [8] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [10] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. Effect of Ohmic loss on coaxial surface wave oscillator in terahertz band. Acta Physica Sinica, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [12] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei. A THz polarization splitter made from suspended dual-core porous fiber. Acta Physica Sinica, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [14] Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. A 0.14 THz coaxial surface wave oscillator. Acta Physica Sinica, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [15] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [16] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [17] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [18] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [19] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [20] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
Metrics
  • Abstract views:  13747
  • PDF Downloads:  977
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2018
  • Accepted Date:  07 March 2018
  • Published Online:  05 May 2018

/

返回文章
返回