Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz isolator based on magneto-optical selection–multi-port architecture

LUO Man XU Zhen LI Jining CHEN Kai WANG Yuye ZHONG Kai XU Degang YAO Jianquan

Citation:

Terahertz isolator based on magneto-optical selection–multi-port architecture

LUO Man, XU Zhen, LI Jining, CHEN Kai, WANG Yuye, ZHONG Kai, XU Degang, YAO Jianquan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • For terahertz systems where reflected signals carry effective information, such as terahertz time-domain reflection systems and full-duplex communication systems, existing nonreciprocal terahertz devices often treat reflected signals as interference and suppress them during isolation. This makes them incompatible with the requirements of such systems for isolating incident signals while directionally extracting and detecting reflected signals. To address this limitation, this study innovatively proposes a terahertz isolator based on a magneto-optical selection–multi-port architecture. The device converts linearly polarized light into a specific circular polarization state through orthogonal double gratings, and by combining the magneto-optical selectivity of InSb material, a nonreciprocal transmission path is constructed. Furthermore, the magneto-optical regulation mechanism innovatively combines branch waveguides with multiple ports and the characteristic of regulating terahertz transmission paths, while achieving isolation of incident/reflected signals and directionally extracting the reflected signals. The simulations of the influences of structural dimensions and external environmental conditions on the nonreciprocal characteristics of the device indicate that when the temperature is 250 K, the magnetic field is 0.3 T, and the structural parameters are set as follows: branch length of 170 μm, center-to-center spacings of adjacent branches of 125 μm, 125 μm, 120 μm, and 120 μm, InSb layer thickness of 5 μm, grating layer thickness of 50 μm, and substrate layer thickness of 20 μm, then the device achieves a high isolation of 63.12 dB at 0.73 THz. Additionally, at 0.78 THz, the bidirectional transmission efficiency reaches 36.31%, with a 3 dB bandwidth of 0.25 THz. This device has the advantages such as high isolation, low operating magnetic field strength, and integration of dual functions. It reduces interference from incident signals on reflected signals, simplifies subsequent processing steps such as noise reduction and localization of effective reflected signals, and improves the system's detection performance for weak signals. This provides essential support for expanding terahertz applications to more fields, including non-destructive testing and communication.
  • 图 1  基于磁光选择-多端口架构的太赫兹隔离器结构图 (a) 整体结构图; (b) InSb复合结构重复单元结构图与三视图

    Figure 1.  Schematic diagrams of the four-port nonreciprocal terahertz device based on InSb-branch waveguide: (a) Overall structure; (b) schematic diagram and standard three-view drawings of the unit cell in the InSb composite structure.

    图 2  太赫兹波传输路径图

    Figure 2.  Schematic diagram of terahertz wave propagation path.

    图 3  分支的长度对器件性能的影响 (a) 双向传输效率变化关系; (b) 隔离度变化关系

    Figure 3.  Impact of branch length on device performance: (a) Dependence of bidirectional transmission efficiency; (b) dependence of isolation characteristics.

    图 4  相邻分支中心间距j1a1b, j1b2b, j2b3b, j3b2a与双向传输效率、隔离度的关系图 (a) j1a1b与双向传输效率的关系图; (b) j1a1b与隔离度的关系图; (c) j1b2b与双向传输效率的关系图; (d) j1b2b与隔离度的关系图; (e) j2b3b与双向传输效率的关系图; (f) j2b3b与隔离度的关系图; (g) j3b2a与双向传输效率的关系图; (h) j3b2a与隔离度的关系图

    Figure 4.  Correlation between center-to-center spacings of adjacent branches (j1a1b, j1b2b, j2b3b, j3b2a) and bidirectional transmission efficiency/isolation characteristics: (a) Relationship between j1a1b and bidirectional transmission efficiency; (b) relationship between j1a1b and isolation; (c) relationship between j1b2b and bidirectional transmission efficiency; (d) relationship between j1b2b and isolation; (e) relationship between j2b3b and bidirectional transmission efficiency; (f) relationship between j2b3b and isolation; (g) relationship between j3b2a and bidirectional transmission efficiency; (h) relationship between j3b2a and isolation.

    图 5  InSb层高度$ {h}_{1} $对器件性能的影响 (a) $ {h}_{1} $小于等于5 μm时双向传输效率变化关系; (b) $ {h}_{1} $大于5 μm时双向传输效率变化关系; (c) 隔离度变化关系

    Figure 5.  Influence of InSb layer thickness $ {h}_{1} $ on device performance: (a) Variation of bidirectional transmission efficiency at $ {h}_{1} $ ≤ 5 μm; (b) variation of bidirectional transmission efficiency at $ {h}_{1} $ > 5 μm; (c) variation of isolation.

    图 6  光栅层高度$ {h}_{2} $对器件性能的影响 (a) 双向传输效率变化关系; (b) 隔离度变化关系

    Figure 6.  Influence of grating layer thickness $ {h}_{2} $ on device performance: (a) Variation of bidirectional transmission efficiency with thickness; (b) variation of isolation with thickness.

    图 7  光栅层高度$ {h}_{3} $对器件性能的影响 (a) 双向传输效率变化关系; (b) 隔离度变化关系

    Figure 7.  Influence of grating layer thickness $ {h}_{3} $ on device performance: (a) Variation of bidirectional transmission efficiency with thickness; (b) variation of isolation with thickness.

    图 8  双向传输效率、隔离度与频率的关系图

    Figure 8.  The diagram of bidirectional transmission efficiency and isolation versus frequency.

    图 9  温度对器件性能的影响 (a) 双向传输效率随温度变化关系; (b) 隔离度随温度变化关系

    Figure 9.  Effect of temperature on device performance: (a) Variation of bidirectional transmission efficiency with temperature; (b) variation of isolation with temperature.

    图 10  磁场强度对器件性能的影响 (a) 双向传输效率随磁场强度变化关系; (b) 隔离度随磁场强度变化关系

    Figure 10.  Effect of magnetic field intensity on device performance: (a) Variation of bidirectional transmission efficiency with magnetic field intensity; (b) variation of isolation with magnetic field intensity.

    表 1  环境参数设定

    Table 1.  Environmental parameter configuration.

    外界环境设置
    温度t/K 250
    磁场B/T 0.3
    DownLoad: CSV

    表 2  器件参数设定

    Table 2.  Device parameter configuration.

    结构参数 结构尺寸/μm
    InSb层高度h1 5
    光栅层高度h2 50
    衬底层高度h3 20
    光栅周期p 25
    光栅条宽度wid 15
    中心分支的高度比例因子b 0.618
    两端分支的高度比例因子a 0.618
    分支的长度h0 170
    相邻分支中心间距j1a1b 125
    相邻分支中心间距j1b2b 125
    相邻分支中心间距j2b3b 120
    相邻分支中心间距j3b2a 120
    DownLoad: CSV

    表 3  现有太赫兹隔离器性能对比

    Table 3.  Performance comparison of existing terahertz isolators.

    提出
    年限
    温度
    /K
    磁场强度
    /T
    隔离度
    /dB
    插入损耗
    /dB
    带宽
    /GHz
    能否定向导
    出反射信号
    2021[8] 室温 0.68 52 约7.5 0.14
    2022[22] 0.29 15 8 223.5
    2024[9] 303 0—0.3 34 0.0269 12
    2024[23] 36 3.9 4500
    2025[10] 34.28
    本文 250 0.3 63.12 4.3 250
    DownLoad: CSV
  • [1]

    Tamagnone M, Moldovan C, Poumirol J M, Kuzmenko A B, Ionescu A M, Mosig J R, Perruisseau-Carrier J 2016 Nat. Commun. 7 11216Google Scholar

    [2]

    Liu Y L, Li J S 2025 Opt. Commun. 575 131310Google Scholar

    [3]

    Wang Y, Ai Y Q, Gan L, Zhou J, Wang Y Y, Wang W, Xu B G, He W L, Li S G 2024 Micromachines 15 745Google Scholar

    [4]

    Zhao D, Fan F, Tan Z Y, Wang H, Chang S J 2023 Laser Photonics Rev. 17 2200509Google Scholar

    [5]

    Xu B G, Zhang D G, Wang Y, Hong B B, Shu G X, He W L 2023 Photonics 10 360Google Scholar

    [6]

    Heydari M B, Samiei M H V 2021 Optik 231 166457Google Scholar

    [7]

    Xue W, Zhang J Y, Ma J W, Hou Z L, Zhao Q L, Xie Q, Bi S 2021 J. Phys. D: Appl. Phys. 54 105103Google Scholar

    [8]

    Yuan S X, Chen L, Wang Z W, Deng W T, Hou Z B, Zhang C, Yu Y, Wu X J, Zhang X L 2021 Nat. Commun. 12 5570Google Scholar

    [9]

    Dong R Y, Sui J Y, Li Z J, Zhang H F 2024 Opt. Laser Technol. 169 110004Google Scholar

    [10]

    Liu Y L, Li J S, Xiong R H, Hu J R 2025 Opt. Express 33 8961Google Scholar

    [11]

    Xu Z, Ren X, Li J N, Liu L H, Zhang N, Luo M, Jiang C, Zhang J X, Qiao X M, Wang T, Xu D G 2024 Phys. Lett. A 524 129838Google Scholar

    [12]

    Liu L H, Li K R, Yang Q, Shang Y, Xu Z, Li J N, Xu D G, Yao J Q 2024 Microelectron. J. 151 106310Google Scholar

    [13]

    丰益年 2022 博士学位论文 (成都: 电子科技大学)

    Feng Y N 2022 Ph. D. Dissertation (Chengdu: School of Electronic Science and Engineering

    [14]

    Syed A, Almalki M H 2023 J. Comput. Networks Commun. 2023 9285354

    [15]

    Niu Z Q, Zhang B, Yang K, Yang Y L, Ji D F, Liu Y, Feng Y N, Fan Y, Chen X D, Li D T 2019 IEEE Trans. Microwave Theory Tech. 67 4733Google Scholar

    [16]

    Li H, Zhang D H, Meng J, Wang L 2024 Micromachines 15 1083Google Scholar

    [17]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [18]

    Shuvaev A M, Astakhov G V, Pimenov A, Brüne C, Buhmann H, Molenkamp L W 2011 Phys. Rev. Lett. 106 107404Google Scholar

    [19]

    Xu C R, Fan W R, Tang Y H, Wang D W 2025 Chin. Phys. Lett. 42 014201Google Scholar

    [20]

    Lin S, Silva S, Zhou J F, Talbayev D 2018 Adv. Opt. Mater. 6 1800572Google Scholar

    [21]

    Fan F, Xiong C Z, Chen J R, Chang S J 2018 Opt. Lett. 43 687Google Scholar

    [22]

    Dmitriev V, Nobre F, Castro W, Portela G, Assunção L 2022 Opt. Commun. 506 127312Google Scholar

    [23]

    Ju X W, Hu Z Q, Zhu G F, Huang F, Chen Y Q, Quo C X, Kono J, Belyanin A, Wang X F 2023 Opt. Express 31 38540Google Scholar

  • [1] LI Yuxi, ZHANG Huiyun, CHEN Jiongxu, WANG Jiacheng, ZHANG Min, JIANG Qingyou, LIU Meng, ZHANG Yuping. Terahertz metasurface independently controlled by spatial vortex and spatiotemporal optical vortex. Acta Physica Sinica, doi: 10.7498/aps.75.20251078
    [2] Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang. Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides. Acta Physica Sinica, doi: 10.7498/aps.73.20240279
    [3] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, doi: 10.7498/aps.71.20220191
    [4] Guo Liang-Hao, Wang Shao-Meng, Yang Li-Xia, Wang Kai-Cheng, Ma Jia-Lu, Zhou Jun, Gong Yu-Bin. Weak resonance effects of THz wave transimission in nerve cell. Acta Physica Sinica, doi: 10.7498/aps.70.20211677
    [5] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, doi: 10.7498/aps.67.20180226
    [6] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, doi: 10.7498/aps.67.20171730
    [7] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, doi: 10.7498/aps.66.148705
    [8] Cui Bin, Yang Yu-Ping, Ma Pin, Yang Xue-Ying, Ma Li-Wen. Optical modulation characteristics of all-dielectric grating at terahertz frequencies. Acta Physica Sinica, doi: 10.7498/aps.65.074209
    [9] Sun Qing, Yang Yi, Deng Yu-Qiang, Meng Fei, Zhao Kun. High-precision measurement of terahertz frequency using an unstabilized femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.65.150601
    [10] Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming. Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide. Acta Physica Sinica, doi: 10.7498/aps.64.078402
    [11] Liu Hai-Wen, Zhan Xin, Ren Bao-Ping. Design of triple bandpass frequency selective surface in terahertz wave band for radio astronomy. Acta Physica Sinica, doi: 10.7498/aps.64.174103
    [12] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation. Acta Physica Sinica, doi: 10.7498/aps.63.010702
    [13] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, doi: 10.7498/aps.63.075201
    [14] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, doi: 10.7498/aps.63.020702
    [15] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, doi: 10.7498/aps.61.098701
    [16] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, doi: 10.7498/aps.61.064102
    [17] Guo Zhan, Fan Fei, Bai Jin-Jun, Niu Chao, Chang Sheng-Jiang. Magnetically tunable magnetic photonic crystal forterahertz switch and filter. Acta Physica Sinica, doi: 10.7498/aps.60.074218
    [18] Fan Fei, Guo Zhan, Bai Jin-Jun, Wang Xiang-Hui, Chang Sheng-Jiang. Magnetically tunable magneto-photonic crystals for multifunctional terahertz polarization controller. Acta Physica Sinica, doi: 10.7498/aps.60.084219
    [19] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, doi: 10.7498/aps.59.2169
    [20] Li Wen-Ping, Zhang Ya-Xin, Liu Sheng-Gang, Liu Da-Gang. Kinetic theory of a novel THZ gyrotron with three-mirror quasi-optical cavity. Acta Physica Sinica, doi: 10.7498/aps.57.2875
Metrics
  • Abstract views:  567
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2025
  • Accepted Date:  28 October 2025
  • Available Online:  01 November 2025
  • /

    返回文章
    返回